Graphical Abstract Highlights d Natural C. elegans microbiota confer protection against pathogen infection d Different Pseudomonas isolates protect C. elegans through distinct mechanisms d P. lurida isolates produce massetolide E and directly inhibit pathogen growth d P. fluorescens-mediated protection may depend on indirect, host-mediated mechanisms
Natural products can contribute to abiotic stress tolerance in plants and fungi. We hypothesize that biosynthetic gene clusters (BGCs), the genomic elements that underlie natural product biosynthesis, display structured differences along elevation gradients. We analysed biosynthetic gene variation in natural populations of the lichen-forming fungus Umb ilicaria pustulata. We collected a total of 600 individuals from the Mediterranean and cold-temperate climates. Population genomic analyses indicate that U. pustulata contains three clusters that are highly differentiated between the Mediterranean and coldtemperate populations. One entire cluster is exclusively present in cold-temperate populations, and a second cluster is putatively dysfunctional in all coldtemperate populations. In the third cluster variation is fixed in all cold-temperate populations due to hitchhiking. In these two clusters the presence of consistent allele frequency differences among replicate populations/gradients suggests that selection rather than drift is driving the pattern. We advocate that the landscape of fungal biosynthetic genes is shaped by both positive and hitchhiking selection. We demonstrate, for the first time, the presence of climate-associated BGCs and BGC variations in lichen-forming fungi. While the associated secondary metabolites of the candidate clusters are presently unknown, our study paves the way for targeted discovery of natural products with ecological significance.
Secretins are versatile outer membrane pores used by many bacteria to secrete proteins, toxins, or filamentous phages; extrude type IV pili (T4P); or take up DNA. Extrusion of T4P and natural transformation of DNA in the thermophilic bacterium Thermus thermophilus requires a unique secretin complex comprising six stacked rings, a membrane-embedded cone structure, and two gates that open and close a central channel. To investigate the role of distinct domains in ring and gate formation, we examined a set of deletion derivatives by cryomicroscopy techniques. Here we report that maintaining the N0 ring in the deletion derivatives led to stable PilQ complexes. Analyses of the variants unraveled that an N-terminal domain comprising a unique ␣ fold is essential for the formation of gate 2. Furthermore, we identified four ␣␣ domains essential for the formation of the N2 to N5 rings. Mutant studies revealed that deletion of individual ring domains significantly reduces piliation. The N1, N2, N4, and N5 deletion mutants were significantly impaired in T4P-mediated twitching motility, whereas the motility of the N3 mutant was comparable with that of wildtype cells. This indicates that the deletion of the N3 ring leads to increased pilus dynamics, thereby compensating for the reduced number of pili of the N3 mutant. All mutants exhibit a wild-type natural transformation phenotype, leading to the conclusion that DNA uptake is independent of functional T4P.
his work aims to find unknown natural products produced by bacteria, that live in close association with nematodes and to elucidate their structure by using mass spectrometry. The first chapter of this work is dedicated to the detection of hitherto unknown natural products by using a metabolomics approach and subsequent structure elucidation of said compounds. This chapter includes metabolomics analysis of Xenorhabdus szentirmaii wild type and knockout mutants, overproduction of the target compound, identification of derivatives from other strains and MS based structure elucidation. The second and third chapters are about natural products that protect C. elegans from B. thuringiensis infections. The second chapter deals with natural products that protect the nematode host without killing the pathogen. I deployed molecular biology methods to generate deletion and overproduction strains of a target compound, identified it via LC-MS/MS analysis and used LC-MS/MS and lipidomics to analyse the chemical properties of the active compound. The third chapter aims at finding natural products, which are produced by Pseudomonas strains MYb11 and MYb12, respectively. These natural products display the ability to protect C. elegans by killing B. thuringiensis. I identified said compounds via fractionation and subsequent bioactivity testing. After identification, I generated production strains of the target compounds and elucidated the structure of the bioactive derivative. The last chapter deals with the structure elucidation of peptides produced by an unusual GameXPeptide synthetase in Xenorhabdus miraniensis. I analysed producer strains of GameXPeptides using LC-MS and elucidated the structural differences between the known GameXPeptides, produced by P. luminescens TT01, and the unusual ones produced by X. miraniensis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.