In this work we derive temperature-dependent functions for the most important material properties needed for phase change studies with octadecane. Over 80 references are reviewed in which at least one thermophysical property of octadecane is measured. The functions are valid ±40 K around the melting temperature and are surrounded by their confidence interval. It turns out that the values for the solid phase have much broader confidence intervals than the ones of the liquid phase. Hence, more accurate measurements are particularly desirable for the solid state material properties.
Classical numerical methods for solving solid–liquid phase change assume a constant density upon melting or solidification and are not efficient when applied to phase change with volume expansion or shrinkage. However, solid–liquid phase change is accompanied by a volume change and an appropriate numerical method must take this into account. Therefore, an efficient algorithm for solid–liquid phase change with a density change is presented. Its performance for a one-dimensional solidification problem and for the quasi two-dimensional melting of octadecane in a cubic cavity was tested. The new algorithm requires less than 1/9 of the iterations compared to the source based method in one dimension and less than 1/7 in two dimensions. Moreover, the new method is validated against PIV measurements from the literature. A conjugate heat transfer simulation, which includes parts of the experimental setup, shows that parasitic heat fluxes can significantly alter the shape of the phase front near the bottom wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.