Diffuse scattering is usually associated with some disorder in the analyzed material. Different kinds of disorder may produce different diffuse scattering ± ± or not. In this letter, we demonstrate some aspects of the variety of diffuse scattering that occurs even in very simple examples, and how unawareness may lead astray.
We introduce a concept for random tilings which, comprising the conventional one, is also applicable to tiling ensembles without height representation. In particular, we focus on the random tiling entropy as a function of the tile densities. In this context, and under rather mild assumptions, we prove a generalization of the first random tiling hypothesis which connects the maximum of the entropy with the symmetry of the ensemble. Explicit examples are obtained through the re-interpretation of several exactly solvable models. This also leads to a counterexample to the analogue of the second random tiling hypothesis about the form of the entropy function near its maximum.
The diffraction of stochastic point sets, both Bernoulli and Markov, and of random tilings with crystallographic symmetries is investigated in rigorous terms. In particular, we derive the diffraction spectrum of 1D random tilings, of stochastic product tilings built from cuboids, and of planar random tilings based on solvable dimer models, augmented by a brief outline of the diffraction from the classical 2D Ising lattice gas. We also give a summary of the measure theoretic approach to mathematical diffraction theory which underlies the unique decomposition of the diffraction spectrum into its pure point, singular continuous and absolutely continuous parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.