The Wimp (weakly interacting massive particle) paradigm for dark matter is currently being probed via many different experiments. Direct detection, indirect detection and collider searches are all hoping to catch a glimpse of these elusive particles. Here, we examine the potential of the Ilc (International Linear Collider) to shed light on the origin of dark matter. By using an effective field theory approach we are also able to compare the reach of the Ilc with that of the other searches. We find that for low mass dark matter (< 10 GeV), the Ilc offers a unique opportunity to search for Wimps beyond any other experiment. In addition, if dark matter happens to only couple to leptons or via a spin dependent interaction, the Ilc can give an unrivalled window to these models. We improve on previous Ilc studies by constructing a comprehensive list of effective theories that allows us to move beyond the non-relativistic approximation.
The aging mechanisms of lead-acid batteries change the electrochemical characteristics. For example, sulfation influences the active surface area, and corrosion increases the resistance. Therefore, it is expected that the state of health (SoH) can be reflected through differentiable changes in the impedance of a lead-acid battery. However, for lead-acid batteries, no reliable SoH algorithm is available based on single impedance values or the spectrum. Additionally, the characteristic changes of the spectrum during aging are unknown. In this work, lead-acid test cells were aged under specific cycle regimes known as AK3.4, and periodic electrochemical impedance spectroscopy (EIS) measurements and capacity tests were conducted. It was examined that single impedance values increased linearly with capacity decay, but with varying slopes depending on the prehistory of the cell and measurement frequency of impedance. Thereby, possible reasons for ineffective SoH estimation were found. The spectra were fitted to an equivalent electrical circuit containing, besides other elements, an ohmic and a charge-transfer resistance of the negative electrode. The linear increase of the ohmic resistance and the charge-transfer resistance were characterized for the performed cyclic aging test. Results from chemical analysis confirmed the expected aging process and the correlation between capacity decay and impedance change. Furthermore, the positive influence of charging on the SoH could be detected via EIS. The results presented here show that SoH estimation using EIS can be a viable technique for lead-acid batteries.
Acid stratification is a common issue in lead-acid batteries. The density of the electrolyte rises from the top to the bottom and causes inhomogeneous current distribution over the electrodes. The consequences are unequal aging processes provoking earlier battery failure. In stationary applications electrolyte circulation pumps are sporadical installed in the battery to mix the acid. For automotive applications passive mixing systems are implemented by some battery manufacturers against stratification. Stratification does not show any distinct voltage-current profile to be recognizable online. However, it increases the voltage and affects the impedance, which both are essential information for diagnostic purpose. Impedance spectra were performed here on lead-acid test cells with adjusted stratification levels to analyze the influence on the impedance in details. It is observed, that the high-frequency impedance is decreased in the stratified cell and that in contrast to this the charge-transfer resistance is increased. Based on simulations with a spatially-resolved equivalent electrical circuit the increased charge-transfer resistance could be explained with an inhomogeneous State-of-Charge resulting in an accumulation of sulfate crystals in the bottom part of the electrodes. These sulfate crystals further affected recorded impedance spectra after the electrolyte was homogenized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.