Learning categories defined by the relations among objects supports the transfer of knowledge from initial learning contexts to novel contexts that share few surface similarities. Often relational categories have correlated (but nonessential) surface features, which can be a distraction from discovering the category-defining relations, preventing knowledge transfer. This is one explanation for "the inert knowledge problem" in education wherein many students fail to spontaneously apply their learning outside the classroom. Here we present a series of experiments using artificial categories that correlate surface features and relational patterns during learning. Our goal was to determine what task parameters and individual differences in learners shift focus to the relational aspect of the category and foster transfer to novel disparate exemplars. We consistently showed that the effectiveness of task structure manipulations (e.g., the sequence of learning exemplars) depended on the learners' strategies (e.g., whether learners are oriented toward discovering rules or focusing on exemplars). Further, we found support that "inference-learning," wherein learners are presented with incomplete exemplars and learn how to infer the missing pieces, is an effective way to promote relational discovery and transfer, even for learners who are not predisposed to make such discoveries. (PsycINFO Database Record
How do people plan ahead when searching for rewards? We investigate planning in a foraging task in which participants search for rewards on an infinite two-dimensional grid. Our results show that their search is best-described by a model which searches approximately 3 steps ahead. Furthermore, participants do not seem to update their beliefs during planning, but rather treat their initial beliefs as given, a strategy sometimes called root-sampling. This planning algorithm corresponds well with participants' behavior in test problems with restricted movement and varying degrees of information, outperforming more complex models. These results enrich our understanding of adaptive planning in complex environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.