Surface structuring by remelting with laser radiation is a new approach to shape metallic surfaces ("WaveShape"). In this structuring process, surface material is reallocated in its molten state instead of being removed, because the process is based on the new active principle of remelting. The surface structure and the microroughness result from a laser-controlled melt pool due to surface tension. Basic research has been conducted with promising results, especially for the hot work steel 1.2343. Since remelting is a thermally driven process, significant differences between metallic materials were expected due to their thermophysical properties such as thermal conductivity, absorption coefficient, viscosity, heat capacity, etc. Therefore, the presented research soughed to expand the spectrum of processable materials. Within the framework of our investigation, we compared the achieved structure height as well as melt pool dimensions for six different materials. Furthermo re, we successfully tested new structuring strategies such as not linearly shaped scanning vectors to create innovative surface structures on all materials investigated. The biggest structures were achieved on the titanium alloy Ti6Al4V and the nickel based super alloy IN718. Finally, an approach of reverse structuring was investigated in order to erase existing structures and achieve a smoothed rewriteable metallic surface. The results show that surface structuring by laser remelting is well suited to process a wide range of different metals and to achieve a broad variety of different structures as well as to effectively erase existing surface structures such as milling marks
Liquid lubrication guarantees high precision and surface quality of workpieces in industrial forming processes. In the case of aluminum cold extrusion, wear and cold welding due to direct contact of tool and workpiece are usually prevented by the extensive use of lubricants. Since the use of lubricants is economically and ecologically unfavorable, surface treatments of tools by, e.g. laser polishing and/or coatings are in the focus of current investigations to substitute these lubricants and establish so called “dry metal forming” processes. The material AISI D2, a ledeburitic 12% chromium steel which is known to have a significant amount of chromium carbide precipitations, is widely used in cold extrusion for forming tools. The large fraction of chromium carbide precipitations, however, hinder the formation of a dense self-assembled monolayer (SAM) that is necessary to avoid direct contact of reactive aluminum with surface oxides of the tool. Therefore, a homogeneous distribution of the chemical elements with a smaller fraction or no chromium carbides in the steel matrix, particularly in the tool surface, is aimed for. Using laser polishing, the surface layer is molten by continuous or pulsed laser radiation. Within the melt pool, the elementary distribution is homogenized as a result of thermal convection and diffusion processes, as well as a smoothed surface and a grain refinement are achieved. Consequently, the effects of the surface treatment by laser polishing on the area coverage of self-assembled monolayers are investigated. Thus, a combined surface treatment by laser polishing and functionalization with a dense self-assembled monolayer shall reduce overall adhesive wear. For this investigation, several specimens of conventional manufactured and powder metallurgical molten AISI D2 are laser polished using continuous or pulsed laser radiation or a combination of both. The resulting surfaces are investigated by microscopy and spectroscopic techniques to analyze the surface topography and the elemental distribution near to the surface. These results are compared to those of conventionally hand-polished specimens. Furthermore, the influence of the element homogenization and grain refinement on the area coverage of self-assembled monolayers is explored. First results show that laser polishing of AISI D2 is suitable to achieve a reduction of grain size and a more homogeneous distribution of chromium carbides within the surface layer.
Within the scope of this study, basic research was carried out on laser micro polishing of the tool steel 1.2379 (AISI D2) using a square, top-hat shaped intensity distribution. The influence of three different quadratic laser beam sizes (100 µm, 200 µm, 400 µm side length) and fluences up to 12 J/cm2 on the resulting surface topography and roughness were investigated. Surface topography was analyzed by microscopy, white light interferometry, spectral roughness analysis, and 1D fast Fourier transformation. Scanning electron microscopy and electrical discharge analyses indicate that chromium carbides are the source of undesired surface features such as craters and dimples, which were generated inherently to the remelting process. Particularly for high laser fluences, a noticeable stripe structure was observed, which is typically a characteristic of a continuous remelting process. Although the micro-roughness was significantly reduced, often, the macro-roughness was increased. The results show that smaller laser polishing fluences are required for larger laser beam dimensions. Additionally, the same or even a lower surface roughness and less undesired surface features were created for larger laser beam dimensions. This shows a potential path for industrial applications of laser micro polishing, where area rates of up to several m2/min might be achievable with commercially available laser beam sources.
A new approach to the reduction of the waviness of metal surfaces is based on laser remelting with modulated laser power. Waviness reduction is reached due to the modification of direction of solidification of a molten pool. The changes of the molten pool are induced by laser radiation in which amplitude is modulated in accordance with initial topography of surface. The laser process with modulated laser power allows decreasing the waviness up to 80%-95% depending of the wavelength of the initial structure. Results are given for milled steel 1.2343. This new approach shows better results in comparison with laser polishing with nonmodulated laser power
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.