Two types of temperature sensors are designed and tested: a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small remotely piloted aircraft (RPA). The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least −10–50 °C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurement. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA
For atmospheric boundary-layer (ABL) studies, unmanned aircraft systems (UAS) can provide new information in addition to traditional in-situ measurements, or by ground- or satellite-based remote sensing techniques. The ability of fixed-wing UAS to transect the ABL in short time supplement ground-based measurements and the ability to extent the data horizontally and vertically allows manifold investigations. Thus, the measurements can provide many new possibilities for investigating the ABL. This study presents the new mark of the Multi-Purpose Airborne Sensor Carrier (MASC-3) for wind and turbulence measurements and describes the subsystems designed to improve the wind measurement, to gain endurance and to allow operations under an enlarged range of environmental conditions. The airframe, the capabilities of the autopilot Pixhawk 2.1, the sensor system and the data acquisition software, as well as the post-processing software, provide the basis for flight experiments and are described in detail. Two flights in a stable boundary-layer and a close comparison to a measurement tower and a Sodar system depict the accuracy of the wind speed and direction measurements, as well as the turbulence measurements. Mean values, variances, covariance, turbulent kinetic energy and the integral length scale agree well with measurements from a meteorological measurement tower. MASC-3 performs valuable measurements of stable boundary layers with high temporal resolution and supplements the measurements of meteorological towers and sodar systems.
The recovery of offshore wind farm wakes in the German Bight was analyzed by a unique in situ data set, measured on‐board the research aircraft Dornier Do‐128 during the WIPAFF project in 2016 and 2017. These observations were used to validate a simple analytical wake recovery model in five case studies. The observed recovery rates were compared with the results of the mesoscale Weather Research and Forecasting (WRF) model. The airborne data show that the wake recovery can be described by an exponential function as expected by the analytical model and strengthens the hypothesis that the vertical downward moment flux has an important influence on the wake recovery. However, the predicted wake recovery rates (by the analytical model) do not always fully agree with the observations. Although, as a first‐order approximation, the model seems to perform well, further optimization has to be implemented to account for wind park layout, turbine induced turbulence, and horizontal momentum flux. WRF simulations reveal an exponential recovery, although the mesoscale model does not reproduce the correct atmospheric conditions for most of the cases. Therefore, the wake recovery rates estimated by WRF disagree with the measured data in most of the studied cases.
Abstract. In the present study, blade-tip vortices have been experimentally identified in the wake of a commercial wind turbine using the Multi-purpose Airborne Sensor Carrier Mark 3 (MASC Mk 3) unmanned aircraft system (UAS) of the University of Tübingen. By evaluation of the wind components, detached blade-tip vortices were identified in the time series. From these measurements, the circulation and core radius of a pair of detached blade-tip vortices is calculated using the Burnham–Hallock (BH) wake vortex model. The presented data were captured under a dominating marine stratification about 2km from the North Sea coastline with northern wind direction. The measured vortices are also compared to the analytical solution of the BH model for two vortices spinning in opposite directions. The model has its origin in aviation, where it describes two aircraft wake vortices spinning in opposite directions. An evaluation method is presented to measure detached-tip vortices with a fixed-wing UAS. The BH model will be used to describe wake vortex properties behind a wind energy converter (WEC). The circulation and core radius of detached blade-tip vortices will be calculated. Also a proposition of the model for WEC wake evaluations will be made to describe two independent co-rotating vortices. Quantifying blade-tip vortices helps to understand the process of vortices detaching from a rotor blade of a wind turbine, their development in the wake until finally dissipating in the far wake and contributing to overall atmospheric turbulence. This is especially interesting for set-ups of numerical simulations when setting the spatial resolution of the simulation grid.
Two types of temperature sensors are designed and tested, a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small RPA. The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least −10...50° C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurements. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.