Amyotrophic lateral sclerosis (ALS) represents a rapidly progressing neurodegenerative disease and is characterized by a degeneration of motor neurons. Motor neurons are particularly susceptible to selective and early degeneration because of their extended axon length and their dependency on the cytoskeleton for its stability, signaling, and axonal transport. The motor neuron cytoskeleton comprises actin filaments, neurofilaments like peripherin, and microtubules. The Transactivating Response Region (TAR) DNA Binding Protein (TDP-43) forms characteristic cytoplasmic aggregates in motor neurons of ALS patients, and at least in part, the pathogenesis of ALS seems to be driven by toxic pTDP-43 aggregates in cytoplasm, which lead to a diminished axon formation and reduced axon length. Diminished axon formation and reduced axon length suggest an interaction of TDP-43 with the cytoskeleton of motor neurons. TDP-43 interacts with several cytoskeletal components, e.g., the microtubule-associated protein 1B (MAP1B) or the neurofilament light chain (NFL) through direct binding to its RNA. From a clinical perspective, cytoskeletal biomarkers like phosphorylated neurofilament heavy chain (pNFH) and NFL are already clinically used in ALS patients to predict survival, disease progression, and duration. Thus, in this review, we focus on the interaction of TDP-43 with the different cytoskeleton components such as actin filaments, neurofilaments, and microtubules as well as their associated proteins as one aspect in the complex pathogenesis of ALS.
The need for ATD was highly prevalent among ALS patients. Failed or protracted provision posed substantial barriers to ATD procurement. Targeted national strategies and the incorporation of ATD indication criteria in international ALS treatment guidelines are urgently needed to overcome these barriers.
The current number of drugs available for the treatment of Alzheimer’s disease (AD) is strongly limited and their benefit for therapy is given only in the early state of the disease. An effective therapy should affect those processes which mainly contribute to the neuronal decay. There have been many approaches for a reduction of toxic Aβ peptides which mostly failed to halt cognitive deterioration in patients. The formation of neurofibrillary tangles (NFT) and its precursor tau oligomers have been suggested as main cause of neuronal degeneration because of a direct correlation of their density to the degree of dementia. Reducing of tau aggregation may be a viable approach for the treatment of AD. NFT consist of hyperphosphorylated tau protein and tau hyperphosphorylation reduces microtubule binding. Several protein kinases are discussed to be involved in tau hyperphosphorylation. We developed novel inhibitors of three protein kinases (gsk-3β, cdk5, and cdk1) and discussed their activity in relation to tau phosphorylation and on tau–tau interaction as a nucleation stage of a tau aggregation in cells. Strongest effects were observed for those inhibitors with effects on all the three kinases with emphasis on gsk-3β in nanomolar ranges.
Amyotrophic lateral sclerosis (ALS) represents a fatal neurodegenerative disease, which is characterized by a rapid loss of lower and upper motor neurons. As a major neuropathological hallmark, protein aggregates containing the Transactivating Response Region (TAR) DNA Binding Protein (TDP-43) are detectable in about 95% of sporadic ALS patients. TDP-43 interacts with itself physiologically to form liquid droplets, which may progress to pathological aggregates. In this study, we established the NanoBit luciferase complementation assay to measure TDP-43 self-interaction and found the fusion of the split luciferase subunits to the N-terminus of the protein as the strongest interacting partners. A screen of pharmacologically active compounds from the LOPAC®1280 library identified auranofin, chelerythrine and riluzole as dose-dependent inhibitors of TDP-43 self-interaction. Further analysis of drug action of the gold-containing thioredoxin reductase inhibitor auranofin revealed a redistribution from insoluble TDP-43 protein pool to PBS-soluble protein pool in N2a cells. In addition, auranofin treatment diminished reduced glutathione as a sign for oxidative modulation.
Delayed post-hypoxic leukoencephalopathy (DPHL) is an uncommon, potentially under-recognized, cause of hypoxia induced white matter injury. It characteristically follows a biphasic course: After an initial phase of altered neurologic status a recovery occurs which is then followed by a recurring phase of neurologic deterioration, typically 2–4 weeks after the initial event. At this time white matter changes can be identified on MRI, which are the hallmark of DPHL. The characteristics and the typical MR-imaging signs of DPHL are discussed in this case report.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.