How does the sensory environment shape circuit organization in higher brain centers? Here we have addressed the dependence on activity of a defined circuit within the mushroom body of adult Drosophila. This is a brain region receiving olfactory information and involved in long-term associative memory formation. The main mushroom body input region, named the calyx, undergoes volumetric changes correlated with alterations of experience. However, the underlying modifications at the cellular level remained unclear. Within the calyx, the clawed dendritic endings of mushroom body Kenyon cells form microglomeruli, distinct synaptic complexes with the presynaptic boutons of olfactory projection neurons. We developed tools for high-resolution imaging of pre- and postsynaptic compartments of defined calycal microglomeruli. Here we show that preventing firing of action potentials or synaptic transmission in a small, identified fraction of projection neurons causes alterations in the size, number, and active zone density of the microglomeruli formed by these neurons. These data provide clear evidence for activity-dependent organization of a circuit within the adult brain of the fly.
Behavioral and physiological studies show that neuronal interactions among the glomeruli in the insect antennal lobe (AL) take place during the processing of odor information. These interactions are mediated by a complex network of inhibitory and excitatory local interneurons (LNs) that restructure the olfactory representation in the AL, thereby regulating the tuning profile of projection neurons. In Periplaneta americana, we characterized two LN types with distinctive physiological properties: (1) type I LNs that generated Na ϩ -driven action potentials on odor stimulation and exhibited GABA-like immunoreactivity (GLIR) and (2) type II LNs, in which odor stimulation evoked depolarizations, but no Na ϩ -driven action potentials (APs). Type II LNs did not express voltage-dependent transient Na ϩ currents and accordingly would not trigger transmitter release by Na ϩ -driven APs. Ninety percent of type II LNs did not exhibit GLIR. The distinct intrinsic firing properties were reflected in functional parameters of their voltage-activated Ca 2ϩ currents (I Ca ). Consistent with graded synaptic release, we found a shift in the voltage for half-maximal activation of I Ca to more hyperpolarized membrane potentials in the type II LNs. These marked physiological differences between the two LN types imply consequences for their computational capacity, synaptic output kinetics, and thus their function in the olfactory circuit.
Satiety-signaling, pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus play a pivotal role in the regulation of energy homeostasis. Recent studies reported altered mitochondrial dynamics and decreased mitochondria- endoplasmic reticulum contacts in POMC neurons during diet-induced obesity. Since mitochondria play a crucial role in Ca2+ signaling, we investigated whether obesity alters Ca2+ handling of these neurons in mice. In diet-induced obesity, cellular Ca2+ handling properties including mitochondrial Ca2+ uptake capacity are impaired, and an increased resting level of free intracellular Ca2+ is accompanied by a marked decrease in neuronal excitability. Experimentally increasing or decreasing intracellular Ca2+ concentrations reproduced electrophysiological properties observed in diet-induced obesity. Taken together, we provide the first direct evidence for a diet-dependent deterioration of Ca2+ homeostasis in POMC neurons during obesity development resulting in impaired function of these critical energy homeostasis-regulating neurons.DOI:
http://dx.doi.org/10.7554/eLife.25641.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.