The integration of magnetic resonance imaging (MRI) for guidance in external beam radiotherapy has faced significant research and development efforts in recent years. The current availability of linear accelerators with an embedded MRI unit, providing volumetric imaging at excellent soft tissue contrast, is expected to provide novel possibilities in the implementation of image-guided adaptive radiotherapy (IGART) protocols. This study reviews open medical physics issues in MR-guided radiotherapy (MRgRT) implementation, with a focus on current approaches and on the potential for innovation in IGART. Daily imaging in MRgRT provides the ability to visualize the static anatomy, to capture internal tumor motion and to extract quantitative image features for treatment verification and monitoring. Those capabilities enable the use of treatment adaptation, with potential benefits in terms of personalized medicine. The use of online MRI requires dedicated efforts to perform accurate dose measurements and calculations, due to the presence of magnetic fields. Likewise, MRgRT requires dedicated quality assurance (QA) protocols for safe clinical implementation. Reaction to anatomical changes in MRgRT, as visualized on daily images, demands for treatment adaptation concepts, with stringent requirements in terms of fast and accurate validation before the treatment fraction can be delivered. This entails specific challenges in terms of treatment workflow optimization, QA, and verification of the expected delivered dose while the patient is in treatment position. Those challenges require specialized medical physics developments towards the aim of fully exploiting MRI capabilities. Conversely, the use of MRgRT allows for higher confidence in tumor targeting and organs-at-risk (OAR) sparing. The systematic use of MRgRT brings the possibility of leveraging IGART methods for the optimization of tumor targeting and quantitative treatment verification. Although several challenges exist, the intrinsic benefits of MRgRT will provide a deeper understanding of dose delivery effects on an individual basis, with the potential for further treatment personalization.
We present a full-scale clinical prototype system for in vivo range verification of proton pencil-beams using the prompt gamma-ray spectroscopy method. The detection system consists of eight LaBr scintillators and a tungsten collimator, mounted on a rotating frame. Custom electronics and calibration algorithms have been developed for the measurement of energy- and time-resolved gamma-ray spectra during proton irradiation at a clinical dose rate. Using experimentally determined nuclear reaction cross sections and a GPU-accelerated Monte Carlo simulation, a detailed model of the expected gamma-ray emissions is created for each individual pencil-beam. The absolute range of the proton pencil-beams is determined by minimizing the discrepancy between the measurement and this model, leaving the absolute range of the beam and the elemental concentrations of the irradiated matter as free parameters. The system was characterized in a clinical-like situation by irradiating different phantoms with a scanning pencil-beam. A dose of 0.9 Gy was delivered to a [Formula: see text] cm target with a beam current of 2 nA incident on the phantom. Different range shifters and materials were used to test the robustness of the verification method and to calculate the accuracy of the detected range. The absolute proton range was determined for each spot of the distal energy layer with a mean statistical precision of 1.1 mm at a 95% confidence level and a mean systematic deviation of 0.5 mm, when aggregating pencil-beam spots within a cylindrical region of 10 mm radius and 10 mm depth. Small range errors that we introduced were successfully detected and even large differences in the elemental composition do not affect the range verification accuracy. These results show that our system is suitable for range verification during patient treatments in our upcoming clinical study.
Real-time motion monitoring of lung tumors with low-field magnetic resonance imaging-guided linear accelerators (MR-Linacs) is currently limited to sagittal 2D cine magnetic resonance imaging (MRI). To provide input data for improved intrafractional and interfractional adaptive radiotherapy, the 4D anatomy has to be inferred from data with lower dimensionality. The purpose of this study was to experimentally validate a previously proposed propagation method that provides continuous time-resolved estimated 4D-MRI based on orthogonal cine MRI for a low-field MR-Linac. Ex vivo porcine lungs were injected with artificial nodules and mounted in a dedicated phantom that allows for the simulation of periodic and reproducible breathing motion. The phantom was scanned with a research version of a commercial 0.35 T MR-Linac. Respiratory-correlated 4D-MRI were reconstructed and served as ground truth images. Series of interleaved orthogonal slices in sagittal and coronal orientation, intersecting the injected targets, were acquired at 7.3 Hz. Estimated 4D-MRI at 3.65 Hz were created in post-processing using the propagation method and compared to the ground truth 4D-MRI. Eight datasets at different breathing frequencies and motion amplitudes were acquired for three porcine lungs. The overall median (95 t h percentile) deviation between ground truth and estimated deformation vector fields was 2.3 mm (5.7 mm), corresponding to 0.7 (1.6) times the in-plane imaging resolution (3.5 × 3.5 mm2). Median (95 t h percentile) estimated nodule position errors were 1.5 mm (3.8 mm) for nodules intersected by orthogonal slices and 2.1 mm (7.1 mm) for nodules located more than 2 cm away from either of the orthogonal slices. The estimation error depended on the breathing phase, the motion amplitude and the location of the estimated position with respect to the orthogonal slices. By using the propagation method, the 4D motion within the porcine lung phantom could be accurately and robustly estimated. The method could provide valuable information for treatment planning, real-time motion monitoring, treatment adaptation, and post-treatment evaluation of MR-guided radiotherapy treatments.
Thoracic tumours are increasingly considered indications for pencil beam scanned proton therapy (PBS-PT) treatments. Conservative robustness settings have been suggested due to potential range straggling effects caused by the lung micro-structure. Using proton radiography (PR) and a 4D porcine lung phantom, we experimentally assess range errors to be considered in robust treatment planning for thoracic indications. A human-chest-size 4D phantom hosting inflatable porcine lungs and corresponding 4D computed tomography (4DCT) were used. Five PR frames were planned to intersect the phantom at various positions. Integral depth-dose curves (IDDs) per proton spot were measured using a multi-layer ionisation chamber (MLIC). Each PR frame consisted of 81 spots with an assigned energy of 210 MeV (full width at half maximum (FWHM) 8.2 mm). Each frame was delivered five times while simultaneously acquiring the breathing signal of the 4D phantom, using an ANZAI load cell. The synchronised ANZAI and delivery log file information was used to retrospectively sort spots into their corresponding breathing phase. Based on this information, IDDs were simulated by the treatment planning system (TPS) Monte Carlo dose engine on a dose grid of 1 mm. In addition to the time-resolved TPS calculations on the 4DCT phases, IDDs were calculated on the average CT. Measured IDDs were compared with simulated ones, calculating the range error for each individual spot. In total, 2025 proton spots were individually measured and analysed. The range error of a specific spot is reported relative to its water equivalent path length (WEPL). The mean relative range error was 1.2% (1.5 SD 2.3 %) for the comparison with the time-resolved TPS calculations, and 1.0% (1.5 SD 2.2 %) when comparing to TPS calculations on the average CT. The determined mean relative range errors justify the use of 3% range uncertainty for robust treatment planning in a clinical setting for thoracic indications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.