Electrical resistance of the elastomeric material polychloroprene filled with multiwalled carbon nanotubes (CNTs) dispersed by using an imidazolium based ionic liquid has been measured experimentally and calculated theoretically, as a function of the applied compression/decompression force F. Both experimental and theoretical results show that the electrical resistance R of the composite exhibits non-monotonic dependence on F. This observed non-monotonic dependence R(F) is explained by different mechanisms of conductivity that are specific to the respective domains of the magnitude of the compression/decompression force F. At small F, the observed decrease of conductivity with increasing F is found to be caused by the change of an average contact distance between CNTs. At higher F, the observed increase of R with increasing F is caused by the dependence of the per-particle surface area on F. The experimentally observed dependence R(F) is adequately described by the developed theory that relies on establishing the exact relation between the CNT network structure and the electrical response of the composite. Theoretical dependence between the conductivity of the composite and the applied stress is obtained using the percolation model of the electrical conductivity of CNT network that shows excellent quantitative agreement with the experimental results.
Inspired by steel forming strategies, this study focuses on the effect of differential cooling on mechanical properties and precipitation kinetics during hot stamping of high strength AA7075 alloy. For this aim, different forming strategies were performed using segmented and differentially heated forming tools to provide locally tailored microstructures. Upon processing, uniaxial tensile tests and hardness measurements were used to characterize the mechanical properties after the aging treatment. Microstructure investigations were conducted to examine the strengthening mechanisms using the electron channeling contrast imaging (ECCI) technique in a scanning electron microscope (SEM). Based on the obtained results, it can be deduced that the tool temperatures play a key role in influencing the mechanical properties. Lower tool temperatures result in higher material strength and higher tool temperatures in lower mechanical properties. By changing the cooling rate with the use of differently heated forming tools, the mechanical properties can be controlled. Microstructure investigations revealed the formation of very fine and homogeneously distributed particles at cooled zones, which were associated with elevated mechanical properties due to the suppression of second phase particle formation during cooling. In contrast, coarse particles were observed at lower cooling rates, explaining the lower material strength found in these zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.