The protection of vulnerable groundwater resources and their optimal management is essential for the Hashemite Kingdom of Jordan to meet current and future water demands. Our overall objective was to analyse the water situation in the district of Bani Kinana, which has received a large number of Syrian refugees in the past, resulting in an increased water demand, which in turn leads to local water shortages and puts tremendous pressure on local groundwater resources. An integrated wastewater resources management (IWRM) approach to protect groundwater resources and to reduce the risk to local communities and ecosystems was developed, and the most cost-effective wastewater treatment system solution was identified, based on the ALLOWS tool (Assessment-of-Local-Lowest-Cost-Wastewater-Solutions). The results show that a large volume of drinking water is directed to the Jordan Valley and it is recommended that this water should be retained to meet current needs and the projected future demand of 8.3 MC in 2050. The ALLOWS tool revealed that the current practice of wastewater disposal by tanker is the costliest scenario in the long-term and will cause the pollution of groundwater resources. A tailored solution, such as the implementation of a cost-efficient semi-centralized wastewater treatment plant, would contribute significantly to protecting vulnerable water recourses.
The springback effect in molded wood laminations within the elastic range has, to date, not yet been mathematically described. Once cured, residual internal stresses within the laminations cause the final form to deviate from that of the die. Test pieces of beech laminations of 1 mm, 2 mm and 4 mm thicknesses and stack sizes of between 2 and 16 laminations were used. The elasticity value of each stack was obtained using non-glued laminations in a three-point bending test within the elastic region. The laminations were glued with polyurethane resin and mounted in a radius form die. The stress induced by the die onto the stack is within the elastic region of the material without any prior chemical or physical plasticisation of the wood. After curing was complete and the laminations removed from the die, the actual radius was calculated using a circular equation within the CAD program, using three measurement points taken from the stack. The radius of the die within the limits of this study has a negligible effect when predicting the springback of the stack. The exponential correlation between springback and the number of laminations, was used to calculate the springback effect on molded laminated stacks.
Similar to a normal wave, a shock wave travels as energy through matter but it causes an abrupt rise of pressure, temperature and density. In this study, the influence of shock waves on wood structure were investigated in the light of possible future industrial utilization e.g. timber impregnating treatment. The constructed autoclave is capable of creating shock waves either by an electrical pulse breakdown of a spark gap arrangement or by electromagnetic actuators. The penetration depths of the fir wood test samples were measured using light microscopy, SEM and micro-computed tomography. Our results showed that by varying the intensity of the incident shock wave, the distance between the shock wave generating device and the test sample, and/or the orientation of test sample in relation to the shockwave, the wood tissue structure had been heavily disintegrated or hardly affected at all. An improvement on impregnation could not be found.
Premazi za drvene okvire biciklaprimjenjivost, metode ispitivanja i rezultati simuliranog izlaganja vremenskim utjecajima Received -prispjelo: 6. 7. 2016. Accepted -prihvaćeno: 1. 12. 2017 630*835.1 doi:10.5552/drind.2017
Original scientifi c paper • Izvorni znanstveni rad
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.