Aminoborane, H2NBH2 and its isotopologues, H2N10BH2, D2NBD2, and D2N10BD2, have been studied by high‐level ab initio methods. All calculations rely on multidimensional potential energy surfaces and dipole moment surfaces including high‐order mode coupling terms, which have been obtained from electronic structure calculations at the level of explicitly correlated coupled‐cluster theory, CCSD(T)‐F12, or the distinguishable cluster approximation, DCSD. Subsequent vibrational structure calculations based on second‐order vibrational perturbation theory, VPT2, and vibrational configuration interaction theory, VCI, were used to determine rotational constants, centrifugal distortion constants, vibrationally averaged geometrical parameters and (an)harmonic vibrational frequencies. The impact of core‐correlation effects is discussed in detail. Rovibrational VCI calculations were used to simulate the gas phase spectra of these species and an in‐depth analysis of the ν7 band of aminoborane is provided. Color‐coding is used to reveal the identity of the individual progressions of the rovibrational transitions for this particular mode.
The positions of grid points for representing a multidimensional potential energy surface (PES) have a non-negligible impact on its accuracy and the associated computational effort for its generation. Six different positioning schemes were studied for PESs represented by n-mode expansions as needed for the accurate calculation of anharmonic vibrational frequencies by means of vibrational configuration interaction theory. A static approach, which has successfully been used in many applications, and five adaptive schemes based on Gaussian process regression have been investigated with respect to the number of necessary grid points and the accuracy of the fundamental modes for a small set of test molecules. A comparison with a related, more sophisticated, and consistent approach by Christiansen et al. is provided. The impact of the positions of the ab initio grid points is discussed for multilevel PESs, for which the computational effort of the individual electronic structure calculations decreases for increasing orders of the n-mode expansion. As a result of that, the ultimate goal is not the maximal reduction of grid points but rather the computational cost, which is not directly related.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.