Climate change, land-use change, pollution and exploitation are among the main drivers of species' population trends; however, their relative importance is much debated. We used a unique collection of over 1,000 local population time series in 22 communities across terrestrial, freshwater and marine realms within central Europe to compare the impacts of long-term temperature change and other environmental drivers from 1980 onwards. To disentangle different drivers, we related species' population trends to species- and driver-specific attributes, such as temperature and habitat preference or pollution tolerance. We found a consistent impact of temperature change on the local abundances of terrestrial species. Populations of warm-dwelling species increased more than those of cold-dwelling species. In contrast, impacts of temperature change on aquatic species' abundances were variable. Effects of temperature preference were more consistent in terrestrial communities than effects of habitat preference, suggesting that the impacts of temperature change have become widespread for recent changes in abundance within many terrestrial communities of central Europe.
During a long-term study in the summer months of the years 1991-2008, 176 megaepifaunal species were recorded through a series of beam trawl surveys on a grid of fixed stations on the Dogger Bank (central North Sea). This paper gives a qualitative overview on species composition throughout the research period, determined from samples collected during 15 cruises. In recent years, a number of species with more oceanic distribution patterns (e.g. species from SW British coasts) has been collected. In spite of these newcomers, there was a slight decrease in total species numbers during the research period.
Identifying patterns in the effects of temperature on species' population abundances could help develop a general framework for predicting the consequences of climate change across different communities and realms. We used long-term population time series data from terrestrial, freshwater, and marine species communities within central Europe to compare the effects of temperature on abundance across a broad range of taxonomic groups. We asked whether there was an average relationship between temperatures in different seasons and annual abundances of species in a community, and whether species attributes (temperature range of distribution, range size, habitat breadth, dispersal ability, body size, and lifespan) explained interspecific variation in the relationship between temperature and abundance. We found that, on average, warmer winter temperatures were associated with greater abundances in terrestrial communities (ground beetles, spiders, and birds) but not always in aquatic communities (freshwater and marine invertebrates and fish). The abundances of species with large geographical ranges, larger body sizes, and longer lifespans tended to be less related to temperature. Our results suggest that climate change may have, in general, positive effects on species' abundances within many terrestrial communities in central Europe while the effects are less predictable in aquatic communities.
This paper deals with climate-driven changes of the species composition of the bottom and near-bottom megafauna of the Dogger Bank (central North Sea), which was sampled each summer with a 2-m beam trawl on a yearly basis since 1991. The station grid consists of 37 stations, covering an area of approximately 17.000 km 2 . A selection of commoner species is analysed and correlated with temperature data gained during the research period. Temperatures are derived from our own measurements, combined with CTD data from the International Council for the Exploration of the Sea. The results show a decrease in biodiversity and a clear regime shift around the beginning of the 21st century, combined with rising mean bottom temperatures. In addition, details are given about the Dogger Bank hydrography and the climate sensitivity and abundance of the main species caught with the beam trawl. Our long-term study reveals the changes in the community structure of the megafauna of the Dogger Bank over a period of almost two decades. It suggests a link between changes in species composition/abundance and changes in the environment, especially the marine climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.