BACKGROUND AND PURPOSEFrankincense, the gum resin derived from Boswellia species, showed anti-inflammatory efficacy in animal models and in pilot clinical studies. Boswellic acids (BAs) are assumed to be responsible for these effects but their anti-inflammatory efficacy in vivo and their molecular modes of action are incompletely understood.
EXPERIMENTAL APPROACHA protein fishing approach using immobilized BA and surface plasmon resonance (SPR) spectroscopy were used to reveal microsomal prostaglandin E2 synthase-1 (mPGES1) as a BA-interacting protein. Cell-free and cell-based assays were applied to confirm the functional interference of BAs with mPGES1. Carrageenan-induced mouse paw oedema and rat pleurisy models were utilized to demonstrate the efficacy of defined BAs in vivo.
KEY RESULTSHuman mPGES1 from A549 cells or in vitro-translated human enzyme selectively bound to BA affinity matrices and SPR spectroscopy confirmed these interactions. BAs reversibly suppressed the transformation of prostaglandin (PG)H2 to PGE2 mediated by mPGES1 (IC50 = 3-10 mM). Also, in intact A549 cells, BAs selectively inhibited PGE2 generation and, in human whole blood, b-BA reduced lipopolysaccharide-induced PGE2 biosynthesis without affecting formation of the COX-derived metabolites 6-keto PGF1a and thromboxane B2. Intraperitoneal or oral administration of b-BA (1 mg·kg -1 ) suppressed rat pleurisy, accompanied by impaired levels of PGE2 and b-BA (1 mg·kg -1 , given i.p.) also reduced mouse paw oedema, both induced by carrageenan.
CONCLUSIONS AND IMPLICATIONSSuppression of PGE2 formation by BAs via interference with mPGES1 contribute to the anti-inflammatory effectiveness of BAs and of frankincense, and may constitute a biochemical basis for their anti-inflammatory properties.
The microsomal prostaglandin E2 synthase (mPGES)-1 is
the terminal enzyme in the biosynthesis of prostaglandin (PG)E2 from cyclooxygenase (COX)-derived PGH2. We previously
found that mPGES-1 is inhibited by boswellic acids (IC50 = 3–30 μM), which are bioactive triterpene acids present
in the anti-inflammatory remedy frankincense. Here we show that besides
boswellic acids, additional known triterpene acids (i.e., tircuallic,
lupeolic, and roburic acids) isolated from frankincense suppress mPGES-1
with increased potencies. In particular, 3α-acetoxy-8,24-dienetirucallic
acid (6) and 3α-acetoxy-7,24-dienetirucallic acid
(10) inhibited mPGES-1 activity in a cell-free assay
with IC50 = 0.4 μM, each. Structure–activity
relationship studies and docking simulations revealed concrete structure-related
interactions with mPGES-1 and its cosubstrate glutathione. COX-1 and
-2 were hardly affected by the triterpene acids (IC50 >
10 μM). Given the crucial role of mPGES-1 in inflammation and
the abundance of highly active triterpene acids in frankincence extracts,
our findings provide further evidence of the anti-inflammatory potential
of frankincense preparations and reveal novel, potent bioactivities
of tirucallic acids, roburic acids, and lupeolic acids.
Age-related diseases, such as osteoarthritis, Alzheimer’s disease, diabetes, and cardiovascular disease, are often associated with chronic unresolved inflammation. Neutrophils play central roles in this process by releasing tissue-degenerative proteases, such as cathepsin G, as well as pro-inflammatory leukotrienes produced by the 5-lipoxygenase (5-LO) pathway. Boswellic acids (BAs) are pentacyclic triterpene acids contained in the gum resin of the anti-inflammatory remedy frankincense that target cathepsin G and 5-LO in neutrophils, and might thus represent suitable leads for intervention with age-associated diseases that have a chronic inflammatory component. Here, we investigated whether, in addition to BAs, other triterpene acids from frankincense interfere with 5-LO and cathepsin G. We provide a comprehensive analysis of 17 natural tetra- or pentacyclic triterpene acids for suppression of 5-LO product synthesis in human neutrophils. These triterpene acids were also investigated for their direct interference with 5-LO and cathepsin G in cell-free assays. Furthermore, our studies were expanded to 10 semi-synthetic BA derivatives. Our data reveal that besides BAs, several tetra- and pentacyclic triterpene acids are effective or even superior inhibitors of 5-LO product formation in human neutrophils, and in parallel, inhibit cathepsin G. Their beneficial target profile may qualify triterpene acids as anti-inflammatory natural products and pharmacological leads for intervention with diseases related to aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.