The majority of patients with solid malignancies die from metastatic burden. However, our current understanding of the mechanisms and resulting patterns of dissemination is limited. Here, we analyzed patterns of metastatic progression across 16 major cancer types in a cohort of 1008 patients with metastatic cancer autopsied between 2000 and 2013 to assess cancer specific progression patterns of disease and related risk predictions. The frequency and location of metastases were evaluated in and across 1) 16 major cancers, 2) smoking- and non-smoking-related cancers and 3) adeno- and squamous cell carcinoma. Associations between primary and secondary sites were analyzed by the fractional and the relative risk methods. We detected significantly different cancer specific patterns of metastatic progression with specific relative risk profiles for secondary site involvement. Histology and smoking etiology influenced these patterns. Backward analysis showed that metastatic patterns help to predict unknown primary sites. Solid malignancies maintain a unique and recurrent organ tropism to specific secondary sites which does not appear to be strongly influenced by advances in cancer medicine as shown by comparison with previous data sets. The delineated landscape of metastatic progression patterns is a comprehensive data resource to both clinical and basic scientists which aids fostering new hypotheses for cancer research and cancer therapies.
Tumor mutational burden (TMB) is a new biomarker for prediction of response to PD-(L)1 treatment. Comprehensive sequencing approaches (i.e., whole exome and whole genome sequencing) are ideally suited to measure TMB directly. However, as their applicability in routine diagnostics is currently limited by high costs, long turnaround times and poor availability of fresh tissue, targeted next-generation sequencing (NGS) of formalin-fixed and paraffin-embedded (FFPE) samples appears to be a more feasible and straightforward approach for TMB approximation, which can be seamlessly integrated in already existing diagnostic workflows and pipelines. In this work, we provide an overview of the clinical implications of TMB testing and highlight key parameters including pre-analysis, analysis and post-analytical steps that influence and shape TMB approximation by panel sequencing. Collectively, the data will not only serve as a field guide and state of the art knowledge source for molecular pathologists who consider implementation of TMB measurement in their lab, but also enable clinicians in understanding the specific parameters influencing TMB test results and reporting.
Tumor mutational burden (TMB) represents a new determinant of clinical benefit from immune checkpoint blockade that identifies responders independent of PD-L1 expression levels and is currently being explored in clinical trials. Although TMB can be measured directly by comprehensive genomic approaches such as whole-genome and exome sequencing, broad availability, short turnaround times, costs and amenability to formalin-fixed and paraffin-embedded tissue support the use of gene panel sequencing for approximating TMB in routine diagnostics. However, data on the parameters influencing panelbased TMB estimation are limited. Here, we report an extensive in silico analysis of the TCGA data set that simulates various panel sizes and compositions. We demonstrate that panel size is a critical parameter that influences confidence intervals (CIs) and cutoff values as well as important test parameters including sensitivity, specificity, and positive predictive value. Moreover, we evaluate the Illumina TSO500 panel, which will be made available for TMB estimation, and propose dynamic, entity-specific cutoff values based on current clinical trial data. Optimizing the cost-benefit ratio, our data suggest that panels between 1.5 and 3 Mbp are ideally suited to estimate TMB with small CIs, whereas smaller panels tend to deliver imprecise TMB estimates for low to moderate TMB (0-30 muts/Mbp), connected with insufficient separation of hypermutated tumors from non-hypermutated tumors.
Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal–distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.