This paper deals with the trajectory generation problem faced by an autonomous vehicle in moving traffic. Being given the predicted motion of the traffic flow, the proposed semi-reactive planning strategy realizes all required long-term maneuver tasks (lane-changing, merging, distance-keeping, velocity-keeping, precise stopping, etc.) while providing short-term collision avoidance. The key to comfortable, human-like as well as physically feasible trajectories is the combined optimization of the lateral and longitudinal movements in street-relative coordinates with carefully chosen cost functionals and terminal state sets (manifolds). The performance of the approach is demonstrated in simulated traffic scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.