We give a complete characterization of the correlated random coding secrecy capacity of arbitrarily varying wiretap channels (AVWCs). We apply two alternative strong secrecy criteria, which both lead to the same multi-letter formula. The difference of these criteria lies in the treatment of correlated randomness, they coincide in the case of uncorrelated codes. On the basis of the derived formula, we show that the correlated random coding secrecy capacity is continuous as a function of the AVWC, in contrast to the discontinuous uncorrelated coding secrecy capacity. In the proof of the secrecy capacity formula for correlated random codes, we apply an auxiliary channel which is compound from the sender to the intended receiver and arbitrarily varying from the sender to the eavesdropper.
We define the common randomness-assisted capacity of an arbitrarily varying wiretap channel (AVWC) when the eavesdropper is kept ignorant about the common randomness. We prove a multi-letter capacity formula for this model. We prove that, if enough common randomness is used, the capacity formula can be given a single-shot form again. We then consider the opposite extremal case, where no common randomness is available, and derive the capacity. It is known that the capacity of the system can be discontinuous under these circumstances. We prove here that it is still stable in the sense that it is continuous around its positivity points. We further prove that discontinuities can only arise if the legal link is symmetrizable and characterize the points where it is positive. These results shed new light on the design principles of communication systems with embedded security features. At last, we investigate the effect of super-activation of the message transmission capacity of AVWCs under the average error criterion. We give a complete characterization of those AVWCs that may be super-activated. The effect is thereby also related to the (conjectured) super-activation of the common randomness assisted capacity of AVWCs with an eavesdropper that gets to know the common randomness. Super-activation is based on the idea of wasting a few bits of non-secret messages in order to enable provably secret transmission of a large bulk of data, a concept that may prove to be of further importance in the design of communication systems. In this paper, we provide further insight into this phenomenon by providing a class of codes that is capacity achieving and does not convey any information to the eavesdropper.
The goal of this paper is to provide a rigorous information-theoretic analysis of subnetworks of interference networks. We prove two coding theorems for the compound multiple-access channel with an arbitrary number of channel states. The channel state information at the transmitters is such that each transmitter has a finite partition of the set of states and knows which element of the partition the actual state belongs to. The receiver may have arbitrary channel state information. The first coding theorem is for the case that both transmitters have a common message and that each has an additional common message. The second coding theorem is for the case where rate-constrained, but noiseless transmitter cooperation is possible. This cooperation may be used to exchange information about channel state information as well as the messages to be transmitted. The cooperation protocol used here generalizes Willems' conferencing. We show how this models base station cooperation in modern wireless cellular networks used for interference coordination and capacity enhancement. In particular, the coding theorem for the cooperative case shows how much cooperation is necessary in order to achieve maximal capacity in the network considered.
We characterize the capacity region of the arbitrarily varying multiple-access channel with conferencing encoders. This channel exhibits a dichotomy: either it is useless or its capacity region equals the region achievable with random coding. We determine exactly when either case holds. This model can be used to analyze downlink networks with cooperating base stations suffering from exterior interference.
Uncertain wiretap channels are introduced. Their zero-error secrecy capacity is defined. If the sensor-estimator channel is perfect, it is also calculated. Further properties are discussed. The problem of estimating a dynamical system with nonstochastic disturbances is studied where the sensor is connected to the estimator and an eavesdropper via an uncertain wiretap channel. The estimator should obtain a uniformly bounded estimation error whereas the eavesdropper's error should tend to infinity. It is proved that the system can be estimated securely if the zero-error capacity of the sensor-estimator channel is strictly larger than the logarithm of the system's unstable pole and the zero-error secrecy capacity of the uncertain wiretap channel is positive.All authors are with the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.