Recently observed quantum emitters in hexagonal boron nitride (hBN) membranes have a potential for achieving high accessibility and controllability thanks to the lower spatial dimension. Moreover, these objects naturally have a high sensitivity to vibrations of the hosting membrane due to its low mass density and high elasticity modulus. Here, we propose and analyze a spin-mechanical system based on color centers in a suspended hBN mechanical resonator. Through group theoretical analyses and ab initio calculation of the electronic and spin properties of such a system, we identify a spin doublet ground state and demonstrate that a spin-motion interaction can be engineered which enables ground state cooling of the mechanical resonator. We also present a toolbox for initialization, rotation, and readout of the defect spin qubit. As a result the proposed setup presents the possibility for studying a wide range of physics. To illustrate its assets, we show that a fast and noise resilient preparation of a multicomponent cat state and a squeezed state of the mechanical resonator is possible; the latter is achieved by realizing the extremely detuned, ultrastrong coupling regime of the Rabi model, where a phonon superradiant phase transition is expected to occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.