The transportation industry needs lightweight structures to meet economic and environmental demands. Composite sandwich structures offer high stiffness and low mass, making them ideal for weight reduction in high-speed trains. The objective of this research is to develop a method of weight and cost optimization for floors of high-speed trains. The studied sandwich floor structure consists of Fiber Metal Laminates (FML) face sheets and a honeycomb core. Different variations of FMLs were investigated to define the optimal sandwich structure for minimum weight and cost. The Neighborhood Cultivation Genetic Algorithm (NCGA) was used to search the design space, and the Finite Element Method (FEM) was used to construct the optimal design of the train car floor panel. The FEM and optimization results had a maximum difference about 11%. The study concluded that using face sheets made entirely of Fiber-Reinforced Plastic (FRP) or Fiber Metal Laminates (FMLs) resulted in significant weight savings of approximately 62% and 32%, respectively, compared to a sandwich structure made entirely of aluminum, but a lighter structure was associated with higher cost. The main contribution of this study is the elaboration of a multi-objective optimization method that utilizes a wide range of constituent materials and structural components in order to construct weight- and cost-optimized sandwich structures.
The current paper proposes an augmentation of power output production of a single-phase grid-connected photovoltaic (PV) system using dual-axis solar tracking (DAST). Solarius PV software was applied to design and predict the energy demand for a single-family house over one year under the climate condition of Basra city, Iraq. The performance of the DAST-PV system was compared to another stationary PV system has the same capacity in terms of power output and the reduction of generated emissions over 20 years lifetime. The results showed that the stationary PV system can overcome up to 84.8% of the total electricity demand of the house while DAST-PV system can overcome up to 100% with surplus energy of 9886.55 kWh. Moreover, the greenhouse gases (GHGs) emissions avoided by the DAT-PV system were about 34.8% more than the stationary system over the system lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.