Monitoring of intracranial pressure (ICP) has been used for decades in the fields of neurosurgery and neurology. There are multiple techniques: invasive as well as noninvasive. This paper aims to provide an overview of the advantages and disadvantages of the most common and well-known methods as well as assess whether noninvasive techniques (transcranial Doppler, tympanic membrane displacement, optic nerve sheath diameter, CT scan/MRI and fundoscopy) can be used as reliable alternatives to the invasive techniques (ventriculostomy and microtransducers). Ventriculostomy is considered the gold standard in terms of accurate measurement of pressure, although microtransducers generally are just as accurate. Both invasive techniques are associated with a minor risk of complications such as hemorrhage and infection. Furthermore, zero drift is a problem with selected microtransducers. The non-invasive techniques are without the invasive methods' risk of complication, but fail to measure ICP accurately enough to be used as routine alternatives to invasive measurement. We conclude that invasive measurement is currently the only option for accurate measurement of ICP.
Elevated intracranial pressure (ICP) is an important cause of secondary brain injury, and a measurement of ICP is often of crucial value in neurosurgical and neurological patients. The gold standard for ICP monitoring is through an intraventricular catheter, but this invasive technique is associated with certain risks. Intraparenchymal ICP monitoring methods are considered to be a safer alternative but can, in certain conditions, be imprecise due to zero drift and still require an invasive procedure. An accurate noninvasive method to measure elevated ICP would therefore be desirable. This article is a review of the current literature on noninvasive methods for measuring and evaluating elevated ICP. The main focus is on studies that compare noninvasively measured ICP with invasively measured ICP. The aim is to provide an overview of the current state of the most common noninvasive techniques available. Several methods for noninvasive measuring of elevated ICP have been proposed: radiologic methods including computed tomography and magnetic resonance imaging, transcranial Doppler, electroencephalography power spectrum analysis, and the audiological and ophthalmological techniques. The noninvasive methods have many advantages, but remain less accurate compared with the invasive techniques. None of the noninvasive techniques available today are suitable for continuous monitoring, and they cannot be used as a substitute for invasive monitoring. They can, however, provide a reliable measurement of the ICP and be useful as screening methods in select patients, especially when invasive monitoring is contraindicated or unavailable.
We evaluated postural effects on intracranial pressure (ICP) and cerebral perfusion pressure [CPP: mean arterial pressure (MAP) - ICP] in neurosurgical patients undergoing 24-h ICP monitoring as part of their diagnostic workup. We identified nine patients (5 women, age 44 ± 20 yr; means ± SD), who were "as normal as possible," i.e., without indication for neurosurgical intervention (e.g., focal lesions, global edema, abnormalities in ICP-profile, or cerebrospinal fluid dynamics). ICP (tip-transducer probe; Raumedic) in the brain parenchyma (n = 7) or in the lateral ventricles (n = 2) and cardiovascular variables (Nexfin) were determined from 20° head-down tilt to standing up. Compared with the supine position, ICP increased during 10° and 20° of head-down tilt (from 9.4 ± 3.8 to 14.3 ± 4.7 and 19 ± 4.7 mmHg; P < 0.001). Conversely, 10° and 20° head-up tilt reduced ICP to 4.8 ± 3.6 and 1.3 ± 3.6 mmHg and ICP reached -2.4 ± 4.2 mmHg in the standing position (P < 0.05). Concordant changes in MAP maintained CPP at 77 ± 7 mmHg regardless of body position (P = 0.95). During head-down tilt, the increase in ICP corresponded to a hydrostatic pressure gradient with reference just below the heart, likely reflecting the venous hydrostatic indifference point. When upright, the decrease in ICP was attenuated, corresponding to formation of a separate hydrostatic gradient with reference to the base of the skull, likely reflecting the site of venous collapse. ICP therefore seems to be governed by pressure in the draining veins and collapse of neck veins may protect the brain from being exposed to a large negative pressure when upright. Despite positional changes in ICP, MAP keeps CPP tightly regulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.