A versatile approach for the synthesis of sequence-controlled multiblock copolymers, using a combination of solid phase synthesis and step-growth polymerization by photoinduced thiol-ene coupling (TEC) is presented. Following this strategy, a series of sequence-controlled glycopolymers is derived from the polymerization of a hydrophilic spacer macromonomer and different glycomacromonomers bearing between one to five α-d-Mannose (Man) ligands. Through the solid phase assembly of the macromonomers, the number and positioning of spacer and sugar moieties is controlled and translates into the sequence-control of the final polymer. A maximum M̅ of 16 kDa, corresponding to a X̅ of 10, for the applied macromonomers is accessible with optimized polymerization conditions. The binding behavior of the resulting multiblock glycopolymers toward the model lectin Concanavalin A (ConA) is studied via turbidity assays and surface plasmon resonance (SPR) measurements, comparing the ability of precision glycomacromolecules and glycopolymers to bind to and cross-link ConA in dependence of the number of sugar moieties and overall molecular weight. The results show that there is a clear correlation between number of Man ligands and Con A binding and clustering, whereas the length of the glycooligomer- or polymer backbone seems to have no effect.
This work presents the translation of sequence-controlled synthesis of macromonomers into sequence-defined and selectively degradable precision polymers.
This study describes a versatile strategy combining reversible addition fragmentation transfer (RAFT) polymerization and click chemistry to synthesize well-defined, reactive copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) for drug delivery applications. A novel azide containing monomer N-(3-azidopropyl)methacrylamide (AzMA) was synthesized and copolymerized with HPMA using RAFT polymerization to provide p(HPMA-co-AzMA) copolymers with high control of molecular weight ($10-54 kDa) and polydispersity ( 1.06). The utility of the side-chain azide functionality by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) was demonstrated by efficient conjugation (up to 92%) of phosphocholine, a near infra-red dye, and poly(ethylene glycol) (PEG) with different substitution degrees, either alone or in combination. This study introduces a novel and versatile method to synthesize welldefined click-reactive HPMA copolymers for preparing a panel of bioconjugates with different functionalities needed to systemically evaluate and tune the biological performance of polymer-based drug delivery.In our work, we present a versatile postmodification strategy that utilizes RAFT radical polymerization of HPMA and a Additional Supporting Information may be found in the online version of this article.
This study investigates the effects of different molecular weight hyaluronic acids (HAs) on the mucosal nanostructure using a pig stomach mucin hydrogel as a mucosal barrier model. Microparticles (1.0 μm) and nanoparticles (200 nm) were used as probes, and their movement in mucin was studied by a three-dimensional confocal microscopy-based particle tracking technique and by Nanoparticle Tracking Analysis (NTA) after addition of high-molecular weight (900 kDa) and low-molecular weight (33 kDa) HA. This demonstrated a molecular weight-dependent HA modulation of the mucin nanostructure with a 2.5-fold decrease in the mobility of 200 nm nanoparticles. To further investigate these mechanisms and to verify that the natural viscoelastic properties of mucus are not undesirably altered, rheological measurements were performed on mucin hydrogels with or without HA. This suggested the observed particle mobility restriction was not attributed to alterations of the natural mucin cohesive and viscoelastic properties but, instead, indicates that the added high-molecular weight HA primarily modulates the mucin nanostructure and mesh size. This study, hereby, demonstrates how mucus nanostructure can be modulated by the addition of high-molecular weight HA that offers an opportunity to control mucosal pathogenesis and drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.