BackgroundGenomic selection (GS) has become a commonly used technology in animal breeding. In crops, it is expected to significantly improve the genetic gains per unit of time. So far, its implementation in plant breeding has been mainly investigated in species farmed as homogeneous varieties. Concerning crops farmed in family pools, only a few theoretical studies are currently available. Here, we test the opportunity to implement GS in breeding of perennial ryegrass, using real data from a forage breeding program. Heading date was chosen as a model trait, due to its high heritability and ease of assessment. Genome Wide Association analysis was performed to uncover the genetic architecture of the trait. Then, Genomic Prediction (GP) models were tested and prediction accuracy was compared to the one obtained in traditional Marker Assisted Selection (MAS) methods.ResultsSeveral markers were significantly associated with heading date, some locating within or proximal to genes with a well-established role in floral regulation. GP models gave very high accuracies, which were significantly better than those obtained through traditional MAS. Accuracies were higher when predictions were made from related families and from larger training populations, whereas predicting from unrelated families caused the variance of the estimated breeding values to be biased downwards.ConclusionsWe have demonstrated that there are good perspectives for GS implementation in perennial ryegrass breeding, and that problems resulting from low linkage disequilibrium (LD) can be reduced by the presence of structure and related families in the breeding population. While comprehensive Genome Wide Association analysis is difficult in species with extremely low LD, we did identify variants proximal to genes with a known role in flowering time (e.g. CONSTANS and Phytochrome C).Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2163-3) contains supplementary material, which is available to authorized users.
KeymessageBy using the genotyping-by-sequencing method, it is feasible to characterize genomic relationships directly at the level of family pools and to estimate genomic heritabilities from phenotypes scored on family-pools in outbreeding species.AbstractGenotyping-by-sequencing (GBS) has recently become a promising approach for characterizing plant genetic diversity on a genome-wide scale. We use GBS to extend the concept of heritability beyond individuals by genotyping family-pool samples by GBS and computing genomic relationship matrices (GRMs) and genomic heritabilities directly at the level of family-pools from pool-frequencies obtained by sequencing. The concept is of interest for species where breeding and phenotyping is not done at the individual level but operates uniquely at the level of (multi-parent) families. As an example we demonstrate the approach using a set of 990 two-parent F2 families of perennial ryegrass (Lolium Perenne). The families were phenotyped as a family-unit in field plots for heading date and crown rust resistance. A total of 728 K single nucleotide polymorphism (SNP) variants were available and were divided in groups of different sequencing depths. GRMs based on GBS data showed diagonal values biased upwards at low sequencing depth, while off-diagonals were little affected by the sequencing depth. Using variants with high sequencing depth, genomic heritability for crown rust resistance was 0.33, and for heading date 0.22, and these genomic heritabilities were biased downwards when using variants with lower sequencing depth. Broad sense heritabilities were 0.61 and 0.66, respectively. Underestimation of genomic heritability at lower sequencing depth was confirmed with simulated data. We conclude that it is feasible to use GBS to describe relationships between family-pools and to estimate genomic heritability directly at the level of F2 family-pool samples, but estimates are biased at low sequencing depth.Electronic supplementary materialThe online version of this article (doi:10.1007/s00122-015-2607-9) contains supplementary material, which is available to authorized users.
Ryegrass single plants, bi-parental family pools, and multi-parental family pools are often genotyped, based on allele-frequencies using genotyping-by-sequencing (GBS) assays. GBS assays can be performed at low-coverage depth to reduce costs. However, reducing the coverage depth leads to a higher proportion of missing data, and leads to a reduction in accuracy when identifying the allele-frequency at each locus. As a consequence of the latter, genomic relationship matrices (GRMs) will be biased. This bias in GRMs affects variance estimates and the accuracy of GBLUP for genomic prediction (GBLUP-GP). We derived equations that describe the bias from low-coverage sequencing as an effect of binomial sampling of sequence reads, and allowed for any ploidy level of the sample considered. This allowed us to combine individual and pool genotypes in one GRM, treating pool-genotypes as a polyploid genotype, equal to the total ploidy-level of the parents of the pool. Using simulated data, we verified the magnitude of the GRM bias at different coverage depths for three different kinds of ryegrass breeding material: individual genotypes from single plants, pool-genotypes from F2 families, and pool-genotypes from synthetic varieties. To better handle missing data, we also tested imputation procedures, which are suited for analyzing allele-frequency genomic data. The relative advantages of the bias-correction and the imputation of missing data were evaluated using real data. We examined a large dataset, including single plants, F2 families, and synthetic varieties genotyped in three GBS assays, each with a different coverage depth, and evaluated them for heading date, crown rust resistance, and seed yield. Cross validations were used to test the accuracy using GBLUP approaches, demonstrating the feasibility of predicting among different breeding material. Bias-corrected GRMs proved to increase predictive accuracies when compared with standard approaches to construct GRMs. Among the imputation methods we tested, the random forest method yielded the highest predictive accuracy. The combinations of these two methods resulted in a meaningful increase of predictive ability (up to 0.09). The possibility of predicting across individuals and pools provides new opportunities for improving ryegrass breeding schemes.
Implementation of genomic selection (GS) for the genetic improvement of forage crops, such as perennial ryegrass, requires the establishment of sufficiently large training populations with high‐quality phenotype and genotype data. This paper presents estimates of genetic and environmental variance and covariance components, obtained in a training population of 1453 F2 families. These families were produced in 2001, 2003, 2005, and 2007, and they were tested at seven locations throughout Europe. Families were cultivated together with commercial varieties that were used as control. Analyses focused on forage yield (green and dry matter) and six traits scored by visual inspection (i.e., rust resistance, aftermath heading, spring growth, density, winter hardiness, and heading date). Data were analyzed with linear mixed models, including fixed effects (trial and control varieties, within year and location), and random effects (breeding values, pedigree or parents, repeated effects of family or parents within location, and within trial environmental effects, to recover interblock information). Results showed very significant genetic variances for all traits, which provide good opportunities for future GS‐based breeding programs. Forage yield showed family heritabilities of up to 0.30 across locations and up to 0.60 within a location. Similar or moderately lower values were found for the other traits. In particular, the heritabilities of rust resistance and aftermath heading were very promising. Genetic correlations between traits were generally low but positive, which increases the potential for multitrait selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.