Mitral valve disease is a frequent cause of heart failure and death. Emerging evidence indicates that the mitral valve is not a passive structure, but—even in adult life—remains dynamic and accessible for treatment. This concept motivates efforts to reduce the clinical progression of mitral valve disease through early detection and modification of underlying mechanisms. Discoveries of genetic mutations causing mitral valve elongation and prolapse have revealed that growth factor signalling and cell migration pathways are regulated by structural molecules in ways that can be modified to limit progression from developmental defects to valve degeneration with clinical complications. Mitral valve enlargement can determine left ventricular outflow tract obstruction in hypertrophic cardiomyopathy, and might be stimulated by potentially modifiable biological valvular–ventricular interactions. Mitral valve plasticity also allows adaptive growth in response to ventricular remodelling. However, adverse cellular and mechanobiological processes create relative leaflet deficiency in the ischaemic setting, leading to mitral regurgitation with increased heart failure and mortality. Our approach, which bridges clinicians and basic scientists, enables the correlation of observed disease with cellular and molecular mechanisms, leading to the discovery of new opportunities for improving the natural history of mitral valve disease.
Background-New insight into the 3D dynamic behavior of the mitral valve has prompted a reevaluation of annuloplasty ring designs. Force balance analysis indicates correlation between annulus forces and stresses in leaflets and chords. Improving this stress distribution can intuitively enhance the durability of mitral valve repair. We tested the hypothesis that saddle-shaped annuloplasty rings have superior uniform systolic force distribution compared with a nonuniform force distribution in flat annuloplasty rings. Methods and Results-Sixteen 80-kg pigs had a flat (nϭ8) or saddle-shaped (nϭ8) mitral annuloplasty ring implanted. Mitral annulus 3D dynamic geometry was obtained with sonomicrometry before ring insertion. Strain gauges mounted on dedicated D-shaped rigid flat and saddle-shaped annuloplasty rings provided the intraoperative force distribution perpendicular to the annular plane. Average systolic annular height to commissural width ratio before ring implantation was 14.0%Ϯ1.6%. After flat and saddle shaped ring implantation, the annulus was fixed in the diastolic (9.0%Ϯ1.0%) and systolic (14.3%Ϯ1.3%) configuration, respectively (PϽ0.01). Force accumulation was seen from the anterior (0.72NϮ0.14N) and commissural annular segments (average 1.38NϮ0.27N) of the flat rings. In these segments, the difference between the 2 types of rings was statistically significant (PϽ0.05). The saddle-shaped annuloplasty rings did not experience forces statistically significantly larger than zero in any annular segments. Conclusions-Saddle-shaped annuloplasty rings provide superior uniform annular force distribution compared to flat rings and appear to represent a configuration that minimizes out-of-plane forces that could potentially be transmitted to leaflets and chords.
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in-vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with μCT. Experimental data from the in-vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in-vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.
Objectives The mitral valve annulus naturally conforms to a saddle shape in systole. This configuration is believed to put the leaflets into a lower-energy equilibrium with the annulus and subvalvular apparatus. Conventional flat annuloplasty rings restrict posterior leaflet motion, which may result in a “monocusp” valve, affecting valvular stress distribution. It is hypothesized that saddle-shaped annuloplasty rings cause less distortion of the physiologic leaflet geometry than do flat rings. Methods Twelve pigs were studied in an acute setting with 3-dimensional echocardiography and sonomicrometry before and after implantation of rigid flat (n = 5) and saddle-shaped (n = 7) annuloplasty rings. The rings were true sized to the annulus with equal anterior–posterior and commissure–commissure circumferential dimensions. The saddle-shaped rings had an annular height to commissural width ratio of 15%. Results Saddle-shaped rings maintained both leaflets operational (P <.01). Flat rings made the posterior leaflet immobile and the anterior leaflet aligned flat along the annulus in systole, effectively resulting in monoleaflet function. The average distance from the papillary muscle tips to the posterior annulus decreased by 2.4 ± 0.4 mm after flat ring implantation (P <.01). Conclusions Saddle-shaped annuloplasty rings provide better leaflet coaptation geometry than do flat rings by not hoisting the papillary muscles toward the posterior annulus through the commissural chordae, allowing greater leaflet mobility. This entails a potentially beneficial impact on valvular stress distribution that could affect durability of the repaired valve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.