Background: Flow properties play an important role in cardiac function, remodeling, and morphogenesis but cannot be displayed in detail with today's echocardiographic techniques. The authors hypothesized that blood speckle-tracking (BST) could visualize and quantify flow patterns. The aim of this study was to determine the feasibility, accuracy, and potential clinical applications of BST in pediatric cardiology.Methods: BST is based on high-frame rate ultrasound, using a combination of plane-wave imaging and parallel receive beamforming. Pattern-matching techniques are used to quantify blood speckle motion. Accuracy of BST velocity measurements was validated using a rotating phantom and by comparing BST-derived inflow velocities with pulsed-wave Doppler obtained in the left ventricles of healthy control subjects. To test clinical feasibility, 102 subjects (21 weeks to 11.5 years of age) were prospectively enrolled, including healthy fetuses (n = 4), healthy control subjects (n = 51), and patients with different cardiac diseases (n = 47). Results:The phantom data showed a good correlation (r = 0.95, with a tracking quality threshold of 0.4) between estimated BST velocities and reference velocities down to a depth of 8 cm. There was a good correlation (r = 0.76) between left ventricular inflow velocity measured using BST and pulsed-wave Doppler. BST displayed lower velocities (mean 6 SD, 0.59 6 0.14 vs 0.82 6 0.21 m/sec for pulsed-wave Doppler). However, the velocity amplitude in BST increases with reduced smoothing. The clinical feasibility of BST was high, as flow patterns in the area of interest could be visualized in all but one case (>99%).Conclusions: BST is highly feasible in fetal and pediatric echocardiography and provides a novel approach for visualizing blood flow patterns. BST provides accurate velocity measurements down to 8 cm, but compared with pulsed-wave Doppler, BST displays lower velocities. Studying blood flow properties may provide novel insights into the pathophysiology of pediatric heart disease and could become an important diagnostic tool. (J
In vivo characterization of intracardiac blood velocity vector fields may provide new clinical information but is currently not available for bedside evaluation. In this paper, 4-D vector flow imaging for intracardiac flow assessment is demonstrated using a clinical ultrasound (US) system and a matrix array transducer, without the use of contrast agent. Two acquisition schemes were developed, one for full volumetric coverage of the left ventricle (LA) at 50 vps and a 3-D thick-slice setup with continuous frame acquisition (4000 vps), both utilizing ECG-gating. The 3-D vector velocity estimates were obtained using a novel method combining phase and envelope information. In vitro validation in a rotating tissue-mimicking phantom revealed velocity estimates in compliance with the ground truth, with a linear regression slope of 0.80, 0.77, and 1.03 for the , , and velocity components, and with standard deviations of 2.53, 3.19, and 0.95 cm/s, respectively. In vivo measurements in a healthy LV showed good agreement with PC-MRI. Quantitative analysis of energy loss (EL) and kinetic energy (KE) further showed similar trends, with peak KE at 1.5 and 2.4 mJ during systole and 3.6 and 3.1 mJ for diastole for US and PC-MRI. Similar for EL, 0.15- 0.2 and 0.7 mW was found during systole and 0.6 and 0.7 mW during diastole, for US and PC-MRI, respectively. Overall, a potential for US as a future modality for 4D cardiac vector flow imaging was demonstrated, which will be further evaluated in clinical studies.
Two-dimensional blood speckle tracking (ST) has shown promise for measuring complex flow patterns in neonatal hearts using linear arrays and high-frame-rate plane wave imaging. For general pediatric applications, however, the need for phased array probes emerges due to the limited intercostal acoustic window available. In this paper, a clinically approved real-time duplex imaging setup with phased array probes was used to investigate the potential of blood ST for the 2-D vector flow imaging of children with congenital heart disease. To investigate transmit beam pattern and tracking accuracy, straight tubes with parabolic flow were simulated at three depths (4.5, 7, and 9.5 cm). Due to the small aperture available, diffraction effects could be observed when approaching 10 cm, which limited the number of parallel receive beams that could be utilized. Moving to (slightly) diverging beams was shown to solve this issue at the expense of a loss in signal-to-noise ratio. To achieve consistent estimates, a forward-backward tracking scheme was introduced to avoid measurement bias occurring due to tracking kernel averaging artifacts at flow domain boundaries. Promising results were observed for depths <10 cm in two pediatric patients, where complex cardiac flow patterns could be estimated and visualized. As a loss in penetration compared with color flow imaging is expected, a larger clinical study is needed to establish the clinical feasibility of this approach.
This study examines the feasibility of blood speckle tracking for vector flow imaging in healthy adults and describes the physiologic flow pattern and vortex formation in relation to the wall motion in the left ventricle. The study included 21 healthy volunteers and quantified and visualized flow patterns with high temporal resolution down to a depth of 10À12 cm without the use of contrast agents. Intraventricular flow seems to originate during the isovolumetric relaxation with a propagation of blood from base to apex. With the E-wave, rapid inflow and vortex formation occurred on both sides of the valve basally. During diastasis the flow gathers in a large vortex before the pattern from the E-wave repeats during the A-wave. In isovolumetric contraction, the flow again gathers in a large vortex that seems to facilitate the flow out in the aorta during systole. No signs of a persistent systolic vortex were visualized. The geometry of the left ventricle and the movement of the AV-plane is important in creating vortices that are favorable for the blood flow and facilitate outflow. The quantitative measurements are in concordance with these findings, but the clinical interpretation must be evaluated in future clinical studies.
Background, Motivation, and Objective Ultrasound vector flow imaging (VFI) methods have shown promise for measuring intracardiac flow patterns, but are hampered by variance and clutter filter dropouts. Methods attempting to mediate often lead to feature blurring (smoothers) or scale poorly when moving to 4D imaging (model-regularizers). We propose a flexible reconstruction framework based on an efficient B-spline interpolation kernel and with model-based data regularization terms computed on the analytical spline gradients. Statement of Contribution/Methods A general purpose nD B-spline interpolator of arbitrary orders and differentials was developed in the open source TensorFlow framework. Sparse gradients supporting reverse mode automatic differentiation (AD) were implemented, enabling the use of stochastic gradient descent optimizers to minimize general differentiable cost functions even on memory constrained systems. This allows arbitrary models and data sources to be specified with a high level of implementation abstraction. Parallel forward pass and AD codes were written for CPU and GPU to increase performance across platforms. The framework was evaluated for vector flow reconstruction constrained by the incompressible Navier-Stokes (NS) equations. Results/Discussion Evaluation was done towards a computational fluid dynamics (CFD) phantom, subjected to semi-realistic artifacts and noise. Measurements were fitted to 4D spline grids, penalizing the deviation from the NS momentum and mass balance at each data point. This resulted in convincing reconstructions for moderately challenging scenarios, example seen in figure, where the (reconstructed) lateral and total RMSE were 3.5 mm/s and 3.0 cm/s respectively. The average 4D reconstruction time of the phantom on a NVIDIA Titan V was 3 minutes. An observed limitation with this model is the lack of inlet/outlet handling, leading to underestimation of the true velocities in these regions when momentum balance is strongly enforced. In vivo 4D data was acquired using a GE Vivid E95 system with a 4V probe, where VFI was done using 3D blood speckle tracking (BST), while the LV domain was extracted automatically using the open-source FAST library. We emphasize that the flexibility of the framework lies in the ease of specifying models and data sources, and its general purpose nature invites application to other regularization problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.