Whole-body vibration training (WBV) has been considered as a novel training method that causes mechanical stimulation in neuromuscular system. Recently, investigators suggested that mechanical stimulation with low frequencies and appropriate amplitudes is an effective way to prepare muscular structures [1]. Therefore, in the present study, we tried to have new approach to this training method and studied the effects of two warm-ups, traditional and WBV warm-up, on performance of Wingate test (e.g. a standard test to evaluate anaerobic power and capacity). Ten physically active male college students volunteered to participate in the study (age = 25 ± 0.8 years; height = 1.72 ± 0.08 m; mass = 70 ± 11 kg; percent body fat = 18 ± 6%). The subjects completed the medical assessment questionnaire. Prior to any participation, the experimental procedures and potential risks were explained fully to the participants and all provided written informed consent. All participants attended a laboratory familiarization visit to introduce the testing/training procedures before baseline testing. These crossover trials were conducted in two days separated by 3 days. At the first day, Subjects used traditional warm-up and three days later, they warmed up with usage of WBV [10 bouts of 30 seconds vibration and 30 seconds rest, frequency was set to 26 Hz, amplitude of the vibration platform was 10 mm in half squat position (flexion 100°)] [2]. After every warmup session, subjects performed a 30 second all-out Wingate test. All data were analyzed using dependent t-tests with SPSS-16. The alpha level for statistical significance was set at P ≤ 0.05. There was a significant difference between two methods of warm-up in just variable of minimum power output, and no differences between two methods of warm-up in peak power output, mean power output, and fatigue index were not observed. WBV warmup causes stimulation and recruitment of the most motor units, and also increases in muscle temperature and muscle blood flow which is due to the augmentation of metabolism in major muscular groups [1,3]; consequently, these events cause improvement in anaerobic power which can explained the improvement of minimum power output by this mechanism.The most important finding of the present study was that we did not observe any differences between two methods of warm-up (whole-body vibration and traditional warm-up) on anaerobic performance of the active males and that these results possibly refer to intensity, duration, and amplitude of the vibration, because changes in each of them can have different effects on force and power output. Since there is no consensus on the presentation of a specific protocol with certain frequency, amplitude and duration of WBV in warm-up period; therefore, more investigations in this field are required.
Whole-body vibration training (WBV) has been considered as a novel training method that causes mechanical stimulation in neuromuscular system. Recently, investigators suggested that mechanical stimulation with low frequencies and appropriate amplitudes is an effective way to prepare muscular structures [1]. Therefore, in the present study, we tried to have new approach to this training method and studied the effects of two warm-ups, traditional and WBV warm-up, on performance of Wingate test (e.g. a standard test to evaluate anaerobic power and capacity). Ten physically active male college students volunteered to participate in the study (age = 25 ± 0.8 years; height = 1.72 ± 0.08 m; mass = 70 ± 11 kg; percent body fat = 18 ± 6%). The subjects completed the medical assessment questionnaire. Prior to any participation, the experimental procedures and potential risks were explained fully to the participants and all provided written informed consent. All participants attended a laboratory familiarization visit to introduce the testing/training procedures before baseline testing. These crossover trials were conducted in two days separated by 3 days. At the first day, Subjects used traditional warm-up and three days later, they warmed up with usage of WBV [10 bouts of 30 seconds vibration and 30 seconds rest, frequency was set to 26 Hz, amplitude of the vibration platform was 10 mm in half squat position (flexion 100°)] [2]. After every warmup session, subjects performed a 30 second all-out Wingate test. All data were analyzed using dependent t-tests with SPSS-16. The alpha level for statistical significance was set at P ≤ 0.05. There was a significant difference between two methods of warm-up in just variable of minimum power output, and no differences between two methods of warm-up in peak power output, mean power output, and fatigue index were not observed. WBV warmup causes stimulation and recruitment of the most motor units, and also increases in muscle temperature and muscle blood flow which is due to the augmentation of metabolism in major muscular groups [1,3]; consequently, these events cause improvement in anaerobic power which can explained the improvement of minimum power output by this mechanism.The most important finding of the present study was that we did not observe any differences between two methods of warm-up (whole-body vibration and traditional warm-up) on anaerobic performance of the active males and that these results possibly refer to intensity, duration, and amplitude of the vibration, because changes in each of them can have different effects on force and power output. Since there is no consensus on the presentation of a specific protocol with certain frequency, amplitude and duration of WBV in warm-up period; therefore, more investigations in this field are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.