A new approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper, a pin-to-hole plasma jet for biological applications has been designed and manufactured and characterized. The characterization includes power consumption via Lissajous method, thermal behavior of atmospheric-pressure plasma jet by using Infra-red camera as a novel method and using Speicair software to determine vibrational and transitional temperatures, and optical emission spectroscopy to determine the generated species. Treatment of Melanoma cancer cells (B16/F10) was also implemented, and tetrazolium salt dye (MTT assay) and flow cytometry were used to evaluate viability. Effect of ultraviolet photons on cancerous cells was also observed using an MgF2 crystal with MTT assay. Finally, in-vivo studies on C57 type mice were also done in order to have a better understanding of the effects in real conditions.
In this paper, a new configuration of a cold atmospheric pressure plasma jet has been designed and constructed. Poly-methyl-methacrylate was used as a new dielectric in this configuration which in comparison to other dielectrics is inexpensive, more resistant against break, and also more shapeable. Then, the plasma jet parameters such as plume temperature, rotational and vibrational temperatures, power, electrical behavior (voltage and current profile), electron density, and the produced reactive species were characterized. In order to determine the jet temperature and the amount of reactive species, effects of applied voltage, gas flow rate, and distance from the nozzle were studied. The power of the jet was specified using Lissajous curve approach. The plume temperature of the plasma jet was about the room temperature. Optical emission spectroscopy determined the type of reactive species, and also electron density and its corresponding plasma frequency (~6.4 × 10(13) cm(-3) and 4.52 × 10(11) Hz). Because of producing different reactive species, the device can be used in different applications, especially in plasma medicine. Thus, 4T1 cancer cells were treated using this plasma jet. The results showed that this plasma jet has a great potential to kill one of the most aggressive and resistant cancerous cell lines.
Cold atmospheric plasmas (CAPs) can affect live cells and organisms due to the production of different reactive species. In this paper, the effects of various parameters of the CAP such as the treatment time, gas mixture, gas flow rate, applied voltage, and distance from the nozzle on the LL/2 lung cancer cell line have been studied. The probable effect of UV radiation has also been investigated using an MgF2 filter. Besides the cancerous cells, the 3T3 fibroblast cell line as a normal cell has been treated with the CAP. The Methylthiazol Tetrazolium assay showed that all parameters except the gas flow rate could impress effectively on the cancer cell viability. The cell proliferation seemed to be stopped after plasma treatment. The flow cytometry assay revealed that apoptosis and necrosis were appreciable. It was also found that treating time up to 2 min will not exert any effect on the normal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.