During tunneling in loose grounds, the ground deformation caused by drillings around the tunnel, leads to land subsidence and the adjacent tunnel which would affect tunnel structure and surrounding structures. In such situations it is necessary to improve the properties of the ground prior to drilling operations. In order to acquire tunnel face stability during excavation operations in areas with loose soil fault or areas with lack of adhesion, there are various methods such as split cross drilling, frame holder or auxiliary pre-holding methods such as umbrella arch method; preholding methods must provide safety when drilling and must be affordable, economically. In this study, we assessed the previous studies on methods and behaviors of umbrella arch strategy in reinforcing the concrete tunnels, reached the purpose with experimental and numerical methods and offered the latest design achievements, implementation progresses and analysis in relation with this method.
According to technology development and relative facilitation in digging and underground structures, ways, highways, all types of tunnels, underground train network, and other underground settle, storage are number of structure built and developed in advanced countries. In most situation, tunnel digging operations are done years after its construction or are not recorded in new structures regulations; therefore, this research investigates soil settlement and inserting force to tunnel coverage by limiting studies about effects of tunnel shapes on soil settlement using Plaxis, Seismo Signal, and Seismo Aspect. This study shows that rectangular tunnel has the most settlement in soil surface and circular tunnel has the least settlement but horseshoe tunnel has similar behavior to circular tunnel; however, earth subsidence level by digging this tunnel is more than circular tunnel. In addition, sectional shape has direct effect on inserting forces on tunnel coverage.
With the increasing population and the consequent needs for transport facilities, the construction of tunnels in urban environments is fast growing. Tunneling at each depth of the soil, causes changes in the earth's surface; this is more important about urban areas tunnels, especially when crossing the residential areas, so having knowledge of their performance is really important. Some of the consequences of underground tunneling are earth surface moving around the tunnel, movement of tunnel's surrounding and changes in earthquake acceleration. The performance and behavior of underground structures have been studied by numerous researchers, but the effect of tunneling on earthquake records and its effects on aboveground structures have been getting less attention. The current article will try to study and examine the changes in seismic velocity at ground level, structural response spectrum, and Fourier spectrum with digging a circular tunnel. The results show that digging a circular tunnel at ground level will cause a change in the earthquake records profile.
Soft soil has low shear strength and its density is high; construction of embankments on them would cause problems such as large and non-uniform subsidence. One way to avoid these subsidence is using of geo-grid combined with cement and lime columns. Geo-grids due to their tensile strength, and cement and lime columns due to their bearing capacity and their body friction, reduce embankment subsidence. Extensive researches have been done in order to reduce the subsidence of the embankments located on the roads, but few studies have being done about the inclined embankments on soft soil layers. In this paper, the road embankment has been located on inclined soft soil layers; the study will try to reduce embankment subsidence and uniform them using geo-grid combined with cement and lime column subsidence. The results show that the realization of this issue will cause subsidence reduction and uniformity in the embankment surface.
Underground tunneling is one of the alternative solutions to diminish traffic congestion in large cities. One of the most important effects of tunneling is the displacement of the ground surface, the settlement around the tunnel, and the variation in earthquake acceleration. The performance and behavior of underground structures have been studied by several researchers, but the impact of tunnel excavation on earthquake records and its effects on structures above the ground level have received less attention. This research emphasizes changes of earthquake acceleration at the ground level, structural response and Fourier spectrum by excavating a horseshoe tunnel. Results show that digging a horseshoe tunnel will change the characteristics of the earthquake record at ground level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.