The demand of many scientific areas for the usage of fractional partial differential equations (FPDEs) to explain their real-world systems has been broadly identified. The solutions may portray dynamical behaviors of various particles such as chemicals and cells. The desire of obtaining approximate solutions to treat these equations aims to overcome the mathematical complexity of modeling the relevant phenomena in nature. This research proposes a promising approximate-analytical scheme that is an accurate technique for solving a variety of noninteger partial differential equations (PDEs). The proposed strategy is based on approximating the derivative of fractional-order and reducing the problem to the corresponding partial differential equation (PDE). Afterwards, the approximating PDE is solved by using a separation-variables technique. The method can be simply applied to nonhomogeneous problems and is proficient to diminish the span of computational cost as well as achieving an approximate-analytical solution that is in excellent concurrence with the exact solution of the original problem. In addition and to demonstrate the efficiency of the method, it compares with two finite difference methods including a nonstandard finite difference (NSFD) method and standard finite difference (SFD) technique, which are popular in the literature for solving engineering problems.
This paper presents an efficient numerical approach for first-order delay differential equations containing a piece-wise constant delay. The strategy is based on a five-point hybrid block method that has been developed for ordinary differential equations. We will use the interpolation technique for the evaluation of delay terms that are not defined at the grid points. The main characteristics are discussed, including zero stability, local truncation errors, convergence and stability region. The method is easy to implement, and the numerical experiments show the efficiency and accuracy of the proposed method, compared to other methods appeared in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.