Without doubt, one of the powerful and effective optimiser in the area of evolutionary algorithms and improved particle swarm optimisation (PSO) is the self-organising hierarchical PSO with time-varying acceleration coefficients (HPSO-TVAC) which has been implemented successfully in the many problems (cited by 2430 until now). Real-world problems are multi-variable problems with real-world different complexities. The classical HPSO-TVAC optimisation technique often converges to local optima solution for some of the real-world problems. Therefore, finding efficient modern versions of the PSO algorithm (here HPSO-TVAC) to solve the real-world problems are absorbing a growing attention in recent years. A novel HPSO-TVAC algorithm for real-world optimisation is proposed. The simulation results show that proposed HPSO-TVAC new version, NHPSO-JTVAC, is powerful and very competitive for real-world optimisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.