Volatile Organic Compounds (VOCs) are within the main industrial air pollutants whose release into the atmosphere is harmful to the ecosystem and human health. Gas-phase photocatalytic degradation of ethylbenzene, an aromatic VOC emitted from various sources, has been investigated in this study using TiO2 nanoparticle-coated glass beads in an annular photoreactor. To use visible light irradiation, TiO2 nanoparticles were doped by nitrogen using urea. The results showed that nitrogen doping significantly increased the removal efficiency of ethylbenzene under visible light irradiation compared with the pure TiO2, so that the removal efficiencies between 75–100% could be yielded for the initial ethylbenzene concentrations up to 0.13 g/m3 under visible light which could be useful for improving indoor air quality. The UV irradiated reactor needed less residence time and much higher removal efficiencies could be yielded at high initial concentrations. When the residence time under UV irradiation was one third of the same under visible light, the removal efficiency was more than 80% for the inlet concentrations up to 0.6 g/m3, whereas the removal efficiency under visible light was about 25% at this inlet concentration. Langmuir-Hinshelwood kinetic model could be well fitted to the photocatalytic reaction in both irradiation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.