In this work, a highly sensitive carcinoembryonic antigen fast Fourier transform admittance biosensor is introduced. The proposed biosensor is based on bilayer films of ZnO/Au nanoparticles as an immobilization matrix. These layers are prepared by self-assembly and deposition method on a gold electrode surface, respectively. Carcinoembryonic antibody (anti-CEA) was immobilized on gold nanoparticles and positively charged horseradish peroxidase (HRP) was used to block sites against nonspecific binding. The admittance biosensor was developed based on fast Fourier transform continuous square wave voltammetry, which produces a sensitive, fast (less than 20 s) and reliable response for determination of carcinoembryonic antigen. The technique was applied as a detector in a flow injection system. The admittances reduction current of the biosensor decreases linearly in two concentrations ranges of CEA from 0.1 to 70 ng/mL and from 70 to 200 ng/mL with a detection limit of 0.01 ng/mL in presence of 0.5 mM H(2)O(2) as an eluent solution.
BackgroundSeveral studies have been focused on design and synthesis of multi-target anti Alzheimer compounds. Utilizing of the dual Acetylcholinesterase/Butyrylcholinesterase inhibitors has gained more interest to treat the Alzheimer’s disease. As a part of a research program to find a novel drug for treating Alzheimer disease, we have previously reported 6-alkoxybenzofuranone derivatives as potent acetylcholinesterase inhibitors. In continuation of our work, we would like to report the synthesis of 5,6-dimethoxy benzofuranone derivatives bearing a benzyl pyridinium moiety as dual Acetylcholinesterase/Butyrylcholinesterase inhibitors.MethodsThe synthesis of target compounds was carried out using a conventional method. Bayer-Villiger oxidation of 3,4-dimethoxybenzaldehyde furnished 3,4-dimethoxyphenol. The reaction of 3,4-dimethoxyphenol with chloroacetonitrile followed by treatment with HCl solution and then ring closure yielded the 5,6-dimethoxy benzofuranone. Condensation of the later compound with pyridine-4-carboxaldehyde and subsequent reaction with different benzyl halides afforded target compounds. The biological activity was measured using standard Ellman’s method. Docking studies were performed to get better insight into interaction of compounds with receptor.ResultsThe in vitro anti acetylcholinesterase/butyrylcholinesterase activity of compounds revealed that, all of the target compounds have good inhibitory activity against both Acetylcholinesterase/Butyrylcholinesterase enzymes in which compound 5b (IC50 = 52 ± 6.38nM) was the most active compound against acetylcholinesterase. The same binding mode and interactions were observed for the reference drug donepezil and compound 5b in docking study.ConclusionsIn this study, we presented a new series of benzofuranone-based derivatives having pyridinium moiety as potent dual acting Acetylcholinesterase/Butyrylcholinesterase inhibitors.
A new series of 3-aryl-5-(pyridin-3-yl)-1-thiocarbamoyl-2-pyrazoline derivatives (4a-j) were prepared by the reaction of azachalcons 3a-j with thiosemicarbazide in ethanolic sodium hydroxide. The structure of synthesized compounds were confirmed by 1 H NMR and Mass spectral data. Their antibacterial activities against Escherichia coli (CTP 7624), Staphylococcus aureus (ATCC 6538), Staphylococcus epidermidis (ATCC 12229), Pseudomonas aeruginosa (ATCC 9027), Bacillus subtilis (ATCC 1156) and Micrococcus luteus (ATCC 9341) were investigated. Antifungal activity of compounds against Candida albicans and Candida globrata were found to be inactive. Compounds 4a-j were also evaluated for antituberculosis activity against Mycobacterium tuberculosis H 37 Rv (ATCC 27294) in BACTEC 12B using a broth microdilution assay and Microplate Alamar Blue Assay (MABA). The preliminary results showed that compounds 4e, 4d and 4g had 87%, 93% and 92% inhibitory effect respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.