SummaryPhotoreceptive, melanopsin-expressing retinal ganglion cells (mRGCs) encode ambient light (irradiance) for the circadian clock, the pupillomotor system, and other influential behavioral/physiological responses. mRGCs are activated both by their intrinsic phototransduction cascade and by the rods and cones. However, the individual contribution of each photoreceptor class to irradiance responses remains unclear. We address this deficit using mice expressing human red cone opsin, in which rod-, cone-, and melanopsin-dependent responses can be identified by their distinct spectral sensitivity. Our data reveal an unexpectedly important role for rods. These photoreceptors define circadian responses at very dim “scotopic” light levels but also at irradiances at which pattern vision relies heavily on cones. By contrast, cone input to irradiance responses dissipates following light adaptation to the extent that these receptors make a very limited contribution to circadian and pupillary light responses under these conditions. Our data provide new insight into retinal circuitry upstream of mRGCs and optimal stimuli for eliciting irradiance responses.
In mammals, the melanopsin gene (Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives of a single orthologous gene (albeit with duplications in the teleost fish). Here, we describe the discovery and functional characterisation of a new melanopsin gene in fish, bird, and amphibian genomes, demonstrating that, in fact, the vertebrates have evolved two quite separate melanopsins. On the basis of sequence similarity, chromosomal localisation, and phylogeny, we identify our new melanopsins as the true orthologs of the melanopsin gene previously described in mammals and term this grouping Opn4m. By contrast, the previously published melanopsin genes in nonmammalian vertebrates represent a separate branch of the melanopsin family which we term Opn4x. RT-PCR analysis in chicken, zebrafish, and Xenopus identifies expression of both Opn4m and Opn4x genes in tissues known to be photosensitive (eye, brain, and skin). In the day-14 chicken eye, Opn4m mRNA is found in a subset of cells in the outer nuclear, inner nuclear, and ganglion cell layers, the vast majority of which also express Opn4x. Importantly, we show that a representative of the new melanopsins (chicken Opn4m) encodes a photosensory pigment capable of activating G protein signalling cascades in a light- and retinaldehyde-dependent manner under heterologous expression in Neuro-2a cells. A comprehensive in silico analysis of vertebrate genomes indicates that while most vertebrate species have both Opn4m and Opn4x genes, the latter is absent from eutherian and, possibly, marsupial mammals, lost in the course of their evolution as a result of chromosomal reorganisation. Thus, our findings show for the first time that nonmammalian vertebrates retain two quite separate melanopsin genes, while mammals have just one. These data raise important questions regarding the functional differences between Opn4x and Opn4m pigments, the associated adaptive advantages for most vertebrate species in retaining both melanopsins, and the implications for mammalian biology of lacking Opn4x.
Attempts to understand circadian organization in the mammalian retina have concentrated increasingly on the mouse. However, rather little is known regarding circadian control of retinal light responses in this species. Here, the authors address this deficit using electroretinogram (ERG) recordings in C57BL/6 mice to evaluate rhythmicity in the wild-type retina and to identify the consequences of circadian clock loss in Cry1(- /-)Cry2(-/-) mice. They observe a circadian rhythm in the ERG waveform under light-adapted, cone-isolating conditions in wild-type mice, with b-wave speed and amplitude and the total power of oscillatory potentials all enhanced during the day. Wild types also exhibited a circadian dependence to ERG amplitude under dark-adapted conditions, but only when the flash stimulus was sufficiently bright to lie within the response range of cones. Cry1(-/ -)Cry2(-/-) mice lacked rhythmicity but retained superficially normal ERGs under all conditions suggesting that circadian clocks are dispensable for general retinal function. However, clock loss was associated with subtle abnormalities in retinal responses, with the amplitude of cone and mixed rod + cone ERGs constitutively enhanced. These data suggest that circadian clocks drive a fundamental fine-tuning of retinal pathways that is particularly apparent under conditions in which vision relies upon either cones alone or mixed rod + cone photoreception.
The mammalian visual system relies upon light detection by outer-retinal rod/cone photoreceptors and melanopsin-expressing retinal ganglion cells. Gnat1−/−;Cnga3−/−;Opn4−/− mice lack critical elements of each of these photoreceptive mechanisms via targeted disruption of genes encoding rod α transducin (Gnat1); the cone-specific α3 cyclic nucleotide gated channel subunit (Cnga3); and melanopsin (Opn4). Although assumed blind, we show here that these mice retain sufficiently widespread retinal photoreception to drive a reproducible flash electroretinogram (ERG). The threshold sensitivity of this ERG is similar to that of cone-based responses, however it is lost under light adapted conditions. Its spectral efficiency is consistent with that of rod opsin, but not cone opsins or melanopsin, indicating that it originates with light absorption by the rod pigment. The TKO light response survives intravitreal injection of U73122 (a phospholipase C antagonist), but is inhibited by a missense mutation of cone α transducin (Gnat2cpfl3), suggesting Gnat2-dependence. Visual responses in TKO mice extend beyond the retina to encompass the lateral margins of the lateral geniculate nucleus and components of the visual cortex. Our data thus suggest that a Gnat1-independent phototransduction mechanism downstream of rod opsin can support relatively widespread responses in the mammalian visual system. This anomalous rod opsin-based vision should be considered in experiments relying upon Gnat1 knockout to silence rod phototransduction.
Light dependent release of dopamine (DA) in the retina is an important component of light-adaptation mechanisms. Melanopsin-containing inner retinal photoreceptors have been shown to make physical contacts with DA amacrine cells and have been implicated in the regulation of the local retinal environment in both physiological and anatomical studies. Here we determined whether they contribute to photic regulation of DA in the retina as assayed by the ratio of DA with its primary metabolite, DOPAC, and by c-fos induction in tyrosine hydroxylase (TH) labeled DA amacrine cells. Light treatment (∼0.7 log W/m2 for 90min) resulted in a substantial increase in DA release (as revealed by an increase in DOPAC:DA ratio) as well as widespread induction of nuclear c-fos in DA amacrine cells in wild type mice and in mice lacking melanopsin (Opn4-/-). Light induced DA release was also retained in mice lacking rod phototransduction (Gnat1-/-), although the magnitude of this response was substantially reduced compared to wild-types, as was the incidence of light-dependent nuclear c-fos in DAergic amacrines. By contrast, the DAergic system of mice lacking both rods and cones (rd/rd cl) showed no detectable light response. Our data suggest that light regulation of DA, a pivotal retinal neuromodulator, originates primarily with rods and cones and that melanopsin is neither necessary nor sufficient for this photoresponse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.