Cold spray (CS) processing is a layer-by-layer solid-state deposition process in which particles at a temperature below their melting point are launched to sufficiently high velocities to adhere to a substrate (and previously deposited particles), forming coatings/parts. Despite being in existence for over four decades, particle bonding mechanisms in the CS process are unclear due to the complex particle–particle/carrier gas interactions that obscure assessment. This review evaluates recent findings from single-particle impact approaches that circumvent these complexities and further provide new insights on bonding mechanisms. Theories on the evolution of oxide layer breakup and delamination, adiabatic shear instability, jetting, melting, and interface solid-state amorphization that contributes to bonding are assessed and carefully reviewed. Although there is a unified condition in which bonding sets on, this study shows that no singular theory explains bonding mechanism. Rather, dominant mechanism is a function of the prevailing barriers unique to each impact scenario.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.