The emergence and rapid development in complexity and popularity of Android mobile phones has created proportionate destructive effects from the world of cyber-attack. Android based device platform is experiencing great threats from different attack angles such as DoS, Botnets, phishing, social engineering, malware and others. Among these threats, malware attacks on android phones has become a daily occurrence. This is due to the fact that Android has millions of user, high computational abilities, popularity, and other essential attributes. These factors influence cybercriminals (especially malware writers) to focus on Android for financial gain, political interest, and revenge. This calls for effective techniques that could detect these malicious applications on android devices. The aim of this paper is to provide a systematic review of the malware detection techniques used for android devices. The results show that most detection techniques are not very effective to detect zero-day malware and other variants that deploy obfuscation to evade detection. The critical appraisal of the study identified some of the limitations in the detection techniques that need improvement for better detection.
The fast-growing nature of instant messaging applications usage on Android mobile devices brought about a proportional increase on the number of cyber-attack vectors that could be perpetrated on them. Android mobile phones store significant amount of information in the various memory partitions when Instant Messaging (IM) applications (WhatsApp, Skype, and Facebook) are executed on them. As a result of the enormous crimes committed using instant messaging applications, and the amount of electronic based traces of evidence that can be retrieved from the suspect’s device where an investigation could convict or refute a person in the court of law and as such, mobile phones have become a vulnerable ground for digital evidence mining. This paper aims at using forensic tools to extract and analyse left artefacts digital evidence from IM applications on Android phones using android studio as the virtual machine. Digital forensic investigation methodology by Bill Nelson was applied during this research. Some of the key results obtained showed how digital forensic evidence such as call logs, contacts numbers, sent/retrieved messages, and images can be mined from simulated android phones when running these applications. These artefacts can be used in the court of law as evidence during cybercrime investigation.
The Rapid expansion of mobile Operating Systems has created a proportional development in Android malware infection targeting Android which is the most widely used mobile OS. factors such Android open source platform, low-cost influence the interest of malware writers targeting this mobile OS. Though there are a lot of anti-virus programs for malware detection designed with varying degrees of signatures for this purpose, many don't give analysis of what the malware does. Some anti-virus engines give clearance during installations of repackaged malicious applications without detection. This paper collected 28 Android malware family samples with a total of 163 sample dataset. A general analysis of the entire sample dataset was created given credence to their individual family samples and year discovered. A general detection and classification of the Android malware corpus was performed using K-means clustering algorithm. Detection rules were written with five major functions for automatic scanning, signature enablement, quarantine and reporting the scan results. The LMD was able to scan a file size of 2048mb and report accurately whether the file is benign or malicious. The K-means clustering algorithm used was set to 5 iteration training phases and was able to classify accurately the malware corpus into benign and malicious files. The obtained result shows that some Android families exploit potential privileges on mobile devices. Information leakage from the victim's device without consent and payload deposits are some of the results obtained. The result calls proactive measures rather than proactive in tackling malware infection on Android based mobile devices.
Allocating resources is crucial in large-scale distributed computing, as networks of computers tackle difficult optimization problems. Within the scope of this discussion, the objective of resource allocation is to achieve maximum overall computing efficiency or throughput. Cloud computing is not the same as grid computing, which is a version of distributed computing in which physically separate clusters are networked and made accessible to the public. Because of the wide variety of application workloads, allocating multiple virtualized information and communication technology resources within a cloud computing paradigm can be a problematic challenge. This research focused on the implementation of an application of the LSTM algorithm which provided an intuitive dynamic resource allocation system that analyses the heuristics application resource utilization to ascertain the best extra resource to provide for that application. The software solution was simulated in near real-time, and the resources allocated by the trained LSTM model. There was a discussion on the benefits of integrating these with dynamic routing algorithms, designed specifically for cloud data centre traffic. Both Long-Short Term Memory and Monte Carlo Tree Search have been investigated, and their various efficiencies have been compared with one another. Consistent traffic patterns throughout the simulation were shown to improve MCTS performance. A situation like this is usually impossible to put into practice due to the rapidity with which traffic patterns can shift. On the other hand, it was verified that by employing LSTM, this problem could be solved, and an acceptable SLA was achieved. The proposed model is compared with other load balancing techniques for the optimization of resource allocation. Based on the result, the proposed model shows the accuracy rate is enhanced by approximately 10–15% as compared with other models. The result of the proposed model reduces the error percent rate of the traffic load average request blocking probability by approximately 9.5–10.2% as compared to other different models. This means that the proposed technique improves network usage by taking less amount of time due, to memory, and central processing unit due to a good predictive approach compared to other models. In future research, we implement cloud data centre employing various heuristics and machine learning approaches for load balancing of energy cloud using firefly algorithms.
The succeeding code for metamorphic Malware is routinely rewritten to remain stealthy and undetected within infected environments. This characteristic is maintained by means of encryption and decryption methods, obfuscation through garbage code insertion, code transformation and registry modification which makes detection very challenging. The main objective of this study is to contribute an evidence-based narrative demonstrating the effectiveness of recent proposals. Sixteen primary studies were included in this analysis based on a pre-defined protocol. The majority of the reviewed detection methods used Opcode, Control Flow Graph (CFG) and API Call Graph. Key challenges facing the detection of metamorphic malware include code obfuscation, lack of dynamic capabilities to analyse code and application difficulty. Methods were further analysed on the basis of their approach, limitation, empirical evidence and key parameters such as dataset, Detection Rate (DR) and False Positive Rate (FPR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.