Paclitaxel (PTX) is one of the most useful chemotherapeutic agents approved for several cancers, including ovarian, breast, pancreatic, and non-small cell lung cancer. However, it causes systemic side effects when administered parenterally. Photodynamic therapy (PDT) is a new strategy for treating local cancers using light and photosensitizer. Unfortunately, PDT is often followed by recurrence, due to incomplete ablation of tumors. To overcome these problems, we prepared the far-red light-activatable prodrug of PTX by conjugating photosensitizer via singlet oxygen-cleavable aminoacrylate linker. Tubulin polymerization enhancement and cytotoxicity of prodrugs were dramatically reduced. However, once illuminated with far-red light, the prodrug effectively killed SKOV-3 ovarian cancer cells through the combined effects of PDT and locally released PTX. Ours is the first PTX prodrug that can be activated by singlet oxygen using tissue penetrable and clinically useful far-red light, which kills the cancer cells through the combined effects of PDT and site-specific PTX chemotherapy.
We recently developed “photo-unclick
chemistry”,
a novel chemical tool involving the cleavage of aminoacrylate by singlet
oxygen, and demonstrated its application to visible light-activatable
prodrugs. In this study, we prepared an advanced multifunctional prodrug,
Pc-(L-CA4)2, composed of the fluorescent photosensitizer
phthalocyanine (Pc), an SO-labile aminoacrylate linker (L), and a
cytotoxic drug combretastatin A-4 (CA4). Pc-(L-CA4)2 had
reduced dark toxicity compared with CA4. However, once illuminated,
it showed improved toxicity similar to CA4 and displayed bystander
effects in vitro. We monitored the time-dependent
distribution of Pc-(L-CA4)2 using optical imaging with
live mice. We also effectively ablated tumors by the illumination
with far-red light to the mice, presumably through the combined effects
of photodynamic therapy (PDT) and released chemotherapy drug, without
any sign of acute systemic toxicity.
Although tissue-penetrable light (red and NIR) has great potential for spatiotemporally controlled release of therapeutic agents, it has been hampered because of the lack of chemistry translating the photonic energy to the cleavage of a chemical bond. Recently, we discovered that an aminoacrylate group could be cleaved to release parent drugs after oxidation by SO and have called this "photo-unclick chemistry". We demonstrate its application to far-red-light-activated prodrugs. A prodrug of combretastatin A-4 (CA4) was prepared, CMP-L-CA4, where CMP is dithiaporphyrin, a photosensitizer, and L is an aminoacrylate linker. Upon irradiation with 690 nm diode laser, the aminoacrylate linker of the prodrug was cleaved, rapidly releasing CA4 (>80% in 10 min) in CDCl3. In tissue culture, it showed about a 6-fold increase in its IC50 in MCF-7 after irradiation, most likely because of the released CA4. Most significantly, CMP-L-CA4 had better antitumor efficacy in vivo than its noncleavable (NC) analog, CMP-NCL-CA4. This is the first demonstration of the in vivo efficacy of the novel low-energy-light-activatable prodrug using the photo-unclick chemistry.
"Click and Photo-unclick Chemistry" of aminoacrylates is proposed for a new photo-labile linker. Adducts are built in 2 steps with good yields and cleaved rapidly by tissue penetrable visible light (690 nm) with a photosensitizer. Facile synthesis, release of mother drug, and stability and cleavage in medium are demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.