This study was carried out employing vertical electrical sounding (VES) with Schlumberger electrode configuration. The objectives were to investigate the distribution of the geohydraulic parameters and the corrosivity of the aquifer layer within the study area. The sand-tocoarse grain sands aquifer have resistivity ranging from 8.1 to 2204 Xm, while the thickness ranged from 7.4 to 55.3 m. These parameters were used in computing the geohydraulic parameters. Hydraulic conductivity was estimated using the Heigold equation, and its values ranged from 1.42 to 54.90 m/day. Estimated hydraulic conductivity values were employed in determining the aquifer transmissivity which ranged from 11.28 to 812.00 m 2 /day, fractional porosities ranged from 0.0351 to 0.0598. The longitudinarl conductance also varies from 0.01 to 1.83 X -1 . The contour plots generated from the SURFER software package show the variation of these parameters. The ranges of these estimated parameters indicate variation in grain sizes, magnitude of pore sizes and facies changes. The corrosivity rating indicates that most of the VES points were practically non-corrosive.
Geoelectric survey employing Vertical Electrical Sounding (VES) was carried out in order to assess the groundwater repositories. A total of seven soundings were obtained with their layer resistivity, thickness and depth within the maximum electrode separation. The geoelectric parameters obtained were used to estimate the Dar-Zarrouk parameters (longitudinal conductance and transverse resistance), hydraulic conductivity and transmissivity. The result shows the aquifer resistivity ranging from 77.14 to 784.76 Ωm, with thickness ranging from 28.78 to 80.04 m. The longitudinal conductance have values ranging from 0.071 to 0.825 Ω-1 while the values of hydraulic conductivity and transmissivity range from 1.087 to 5.881 m/day and 60.180 to 374.031 𝑚2/day respectively. The contour maps generated show the variation of these parameters across the subsurface, and areas with poor protective capacity were delineated. The results also delineate the groundwater potential of the study area as moderate, while the corrosivity rating indicates non-corrosive and slightly corrosive.
Seismic refraction survey was conducted at Ibiono Ibom Local government area of Akwa Ibom State, Nigeria, using 12 channels ES 3000S enhancement seismograph. This was done to evaluate and obtained information on depth and thickness of the shallow subsurface and characterized the bearing and engineering parameters on the bases of soil and rock competencies for stability of engineering works. The travel times of refracted waves measured were used to calculate P and S wave velocities employed in the evaluation of bearing strength and engineering parameters. The results revealed that seismic waves penetrated into three layers. The values of depth and thickness for upper layer ranged from 0.0 m to 4.5 m and 4.5 m, middle layer ranged from 5.0 m to 12.5 m and 7.5, lower layer ranged from 15.0 m to 25.2 m and 10.2 m. The bearing capacity parameters calculated were allowable bearing capacity and ultimate bearing capacity, engineering parameters: Concentration Index, Stress Ratio, Material Index and Density Gradient. The third layer reflected good competent soil and rock quality in the southeastern part of the study area, and was delineated as a better layer for engineering stability.
Gravity anomalies in parts of the Niger Delta region, Nigeria, were investigated through the interpretation of aerogarvity data with the objectives to determine the thickness of the sedimentary basin, establish the basement topography, density contrasts and the geological models which will give information about variation of geological structures. Four sheets of digital airborne gravity data were used for the study. Source parameter imaging (SPI), Standard Euler deconvolution and forward and inverse modeling techniques were employed in quantitative interpretation. The Bouguer anomaly of the study area varied from-20.0 to 37.7 mGal, while the residual Bouguer anomaly varied from-19.6 to 25.7 mGal. The SPI gave depth values ranging from-539.7 to-4276.0 m for shallow and deep lying gravity anomalous bodies. The windowed Euler-3D for Bouguer gravity result revealed the depth range of 1355.5 to-1518.1 m for structural index of one; 2384.5 to-3283.2 m for structural index of two and 2426.0 to-5011 m for structural index of three. The forward and inverse modeling gave the density values for the modeled profiles 1, 2, 3, 4 and 5 as 1.820, 2.410, 0.720, 2.310 and 2.100 gcm-3 , respectively, with their respective depths of 3872, 4228, 4880, 3560 and 2527 m. The results from this study have shown that the depth to basement and density contrast have influence on the petroleum/hydrocarbon accumulation.
Geoelectric survey employing Vertical Electrical Sounding (VES) was carried out in order to assess the groundwater repositories. A total of seven soundings were obtained with their layer resistivity, thickness and depth within the maximum electrode separation. The geoelectric parameters obtained were used to estimate the Dar-Zarrouk parameters (longitudinal conductance and transverse resistance), hydraulic conductivity and transmissivity. The result shows the aquifer resistivity ranging from 77.14 to 784.76 Ωm, with thickness ranging from 28.78 to 80.04 m. The longitudinal conductance have values ranging from 0.071 to 0.825 Ω-1 while the values of hydraulic conductivity and transmissivity range from 1.087 to 5.881 m/day and 60.180 to 374.031 𝑚2/day respectively. The contour maps generated show the variation of these parameters across the subsurface, and areas with poor protective capacity were delineated. The results also delineate the groundwater potential of the study area as moderate, while the corrosivity rating indicates non-corrosive and slightly corrosive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.