Biltong is a dried meat product that is widely consumed in South Africa. The marinated meat is traditionally dried under ambient winter conditions while commercial biltong producers use hot air driers. Hot air drying is time-consuming and energy-intensive. A combined infrared and hot air drying (IRHAD) is an alternative method of drying meat during biltong processing. The aim of this study was to establish the effect of the infrared (IR) power, the temperature, and velocity of the drying air on the drying kinetics of marinated beef and subsequently select the best thin-layer drying model for IRHAD during biltong processing. Marinated beef samples were dried at IR power levels of 500, 750, and 1000 W; drying air temperatures of 30, 35, and 40°C; and air velocity of 1.5 and 2.5 m∙s-1. Results indicate that increasing the IR power and the drying air temperature increased the IR emitter temperature and the core temperature of the marinated beef sample. Consequently, increasing the drying rate thus reduced drying time. The air velocity had an inverse relationship with the IR emitter temperature, the core temperature of the marinated beef sample, and the drying rate. The drying process was characterised by a rising rate period in the first half an hour, followed by a falling rate period which implies that moisture transport occurred partly by surface evaporation and predominantly by diffusion. The effective moisture diffusivity ranged from 4.560 × 10 − 10 to 13.7 × 10 − 10 m 2 ∙ s − 1 , while, the activation energy ranged between 40.97 and 59.16 kJ∙mol-1. The IRHAD of marinated beef during its processing to biltong was best described by the two-term model since it had the highest R 2 (0.9982-0.9993) and the lowest RMSE (0.0062-0.0099). The power level of the IR emitter of 1000 W combined with a drying air temperature and velocity of 40°C and 1.5 m∙s-1, respectively, showed the highest improvement in the drying kinetics and the lowest drying time of 5.61 ± 0.35 hours; hence, it is recommended as a possible drying alternative for the processing of biltong.
<p>The study aimed at measuring changes in chemical composition of maize kernels due to <em>Aspergillus flavus</em> Link. and <em>Fusarium verticillioides</em> (Sacc.) Nirenberg infection. The samples of maize kernels were incubated at 28 °C for 7, 14, 21, and 28 days. The samples were analysed for mycotoxin, moisture, crude fat, crude protein, crude ash, and crude fibre. Maize kernels inoculated with <em>A. flavus</em> and <em>F. verticillioides</em> exhibited a significant decrease in crude fat. Aflatoxin B1 (AFB1) contamination increased in maize kernels inoculated with <em>A. flavus</em>, and fumonisin B1 (FB1) in kernels inoculated with <em>F. verticillioides</em>. Crude ash and crude fibre content showed no changes. Incubation time significantly affected AFB1 and FB1 contamination levels, moisture, crude fat, and crude protein contents. AFB1 and FB1 contamination were significantly correlated with crude fat degradation. The tested strains had similar deteriorative effects on maize kernels. The significant changes in the proximate composition were only observed in maize kernels with mycotoxin contamination above the regulatory limit of 10 µg kg−1, thus not fit for human consumption.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.