People see with feeling. We 'gaze', 'behold', 'stare', 'gape' and 'glare'. In this paper, we develop the hypothesis that the brain's ability to see in the present incorporates a representation of the affective impact of those visual sensations in the past. This representation makes up part of the brain's prediction of what the visual sensations stand for in the present, including how to act on them in the near future. The affective prediction hypothesis implies that responses signalling an object's salience, relevance or value do not occur as a separate step after the object is identified. Instead, affective responses support vision from the very moment that visual stimulation begins.
Humans mind-wander quite intensely. Mind wandering is markedly different from other cognitive behaviors because it is spontaneous, self-generated, and inwardly directed (inner thoughts). However, can such an internal and intimate mental function also be modulated externally by means of brain stimulation? Addressing this question could also help identify the neural correlates of mind wandering in a causal manner, in contrast to the correlational methods used previously (primarily functional MRI). In our study, participants performed a monotonous task while we periodically sampled their thoughts to assess mind wandering. Concurrently, we applied transcranial direct current stimulation (tDCS). We found that stimulation of the frontal lobes [anode electrode at the left dorsolateral prefrontal cortex (DLPFC), cathode electrode at the right supraorbital area], but not of the occipital cortex or sham stimulation, increased the propensity to mind-wander. These results demonstrate for the first time, to our knowledge, that mind wandering can be enhanced externally using brain stimulation, and that the frontal lobes play a causal role in mind-wandering behavior. These results also suggest that the executive control network associated with the DLPFC might be an integral part of mind-wandering neural machinery.
The human amygdala robustly activates to fear faces. Heightened response to fear faces is thought to reflect the amygdala's adaptive function as an early warning mechanism. Although culture shapes several facets of emotional and social experience, including how fear is perceived and expressed to others, very little is known about how culture influences neural responses to fear stimuli. Here we show that the bilateral amygdala response to fear faces is modulated by culture. We used functional magnetic resonance imaging to measure amygdala response to fear and nonfear faces in two distinct cultures. Native Japanese in Japan and Caucasians in the United States showed greater amygdala activation to fear expressed by members of their own cultural group. This finding provides novel and surprising evidence of cultural tuning in an automatic neural response.
It has long been known that macaque inferior temporal (IT) neurons tend to fire more strongly to some shapes than to others, and that different IT neurons can show markedly different shape preferences. Beyond the discovery that these preferences can be elicited by features of moderate complexity, no general principle of (nonface) object recognition had emerged by which this enormous variation in selectivity could be understood. Psychophysical, as well as computational work, suggests that one such principle is the difference between viewpoint-invariant, nonaccidental (NAP) and view-dependent, metric shape properties (MPs). We measured the responses of single IT neurons to objects differing in either a NAP (namely, a change in a geon) or an MP of a single part, shown at two orientations in depth. The cells were more sensitive to changes in NAPs than in MPs, even though the image variation (as assessed by wavelet-like measures) produced by the former were smaller than the latter. The magnitude of the response modulation from the rotation itself was, on average, similar to that produced by the NAP differences, although the image changes from the rotation were much greater than that produced by NAP differences. Multidimensional scaling of the neural responses indicated a NAP/MP dimension, independent of an orientation dimension. The present results thus demonstrate that a significant portion of the neural code of IT cells represents differences in NAPs rather than MPs. This code may enable immediate recognition of novel objects at new views.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.