Hereditary inclusion body myopathy (HIBM; OMIM 600737) is a unique group of neuromuscular disorders characterized by adult onset, slowly progressive distal and proximal weakness and a typical muscle pathology including rimmed vacuoles and filamentous inclusions. The autosomal recessive form described in Jews of Persian descent is the HIBM prototype. This myopathy affects mainly leg muscles, but with an unusual distribution that spares the quadriceps. This particular pattern of weakness distribution, termed quadriceps-sparing myopathy (QSM), was later found in Jews originating from other Middle Eastern countries as well as in non-Jews. We previously localized the gene causing HIBM in Middle Eastern Jews on chromosome 9p12-13 (ref. 5) within a genomic interval of about 700 kb (ref. 6). Haplotype analysis around the HIBM gene region of 104 affected people from 47 Middle Eastern families indicates one unique ancestral founder chromosome in this community. By contrast, single non-Jewish families from India, Georgia (USA) and the Bahamas, with QSM and linkage to the same 9p12-13 region, show three distinct haplotypes. After excluding other potential candidate genes, we eventually identified mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) gene in the HIBM families: all patients from Middle Eastern descent shared a single homozygous missense mutation, whereas distinct compound heterozygotes were identified in affected individuals of families of other ethnic origins. Our findings indicate that GNE is the gene responsible for recessive HIBM.
The spore-forming bacterium Bacillus subtilis forms matrix-enclosed biofilms in response to environmental cues that to date remain poorly defined. Biofilm formation depends on the synthesis of an extracellular matrix, which is indirectly regulated by the transcriptional regulator Spo0A. The activity of Spo0A depends on its phosphorylation state. The level of phosphorylated Spo0A (Spo0AϳP) is controlled by a network of kinases and phosphatases, which respond to environmental and physiological signals. In spite of significant progress in understanding biofilm development, the fundamental question of how cells sense the environmental cues that trigger biofilm formation has largely remained unaddressed. Here, we report that biofilm formation of B. subtilis in LB medium is triggered by a combination of glycerol and manganese (GM). Moreover, LB medium with GM significantly stimulates biofilm-associated sporulation and production of an undefined brown pigment. We further show that transcription of the major operons responsible for matrix production and biofilm formation is dramatically enhanced in response to GM. We also establish that KinD is a principal histidine kinase responsible for sensing the presence of GM exclusively by its extracellular CACHE domain. Finally, we show that GM has a similar biofilm-promoting effect in two related Bacillus species, B. licheniformis and B. cereus, indicating that the biofilm-promoting effect of GM is conserved in Bacillus species.
Streptococcus mutans is known as a primary pathogen of dental caries, one of the most common human infectious diseases. Exopolysaccharide synthesis, adherence to tooth surface and biofilm formation are important physiological and virulence factors of S. mutans. In vitro comparative gene expression analysis was carried out to differentiate 10 selected genes known to be mostly involved in S. mutans biofilm formation by comparing the expression under biofilm and planktonic environments. Real-time RT-PCR analyses indicated that all of the genes tested were upregulated in the biofilm compared to cells grown in planktonic conditions. The influence of simple dietary carbohydrates on gene expression in S. mutans biofilm was tested also. Among the tested genes, in the biofilm phase, the greatest induction was observed for gtf and ftf, which are genes encoding the extracellular polysaccharide-producing enzymes. Biofilm formation was accompanied by a 22-fold induction in the abundance of mRNA encoding glucosyltransferase B (GTFB) and a 14.8 -fold increase in mRNA encoding GTFC. Levels of mRNA encoding fructosyltransferase were induced approximately 11.8-fold in biofilm-derived cells. Another notable finding of this study suggests that glucose affects the expression of S. mutans GS5 biofilm genes. In spite of a significant upregulation in biofilm-associated gene expression in the presence of sucrose, the presence of glucose with sucrose reduced expression of most tested genes. Differential analysis of the transcripts from S. mutans, grown in media with various nutrient contents, revealed significant shifts in the expression of the genes involved in biofilm formation. The results presented here provide new insights at the molecular level regarding gene expression in this bacterium when grown under biofilm conditions, allowing a better understanding of the mechanism of biofilm formation by S. mutans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.