This study aims to examine the in uence of untreated coal waste (UCW) and treated coal waste (TCW) as supplementary cementitious materials (SCMs) on the environmental, mechanical, durability, and microstructural characteristics of mortar mixes. UCW preparation procedure consists of sequential steps of crushing and grinding. Afterward, UCW is thermally activated through incinerating at 750°C to be promoted to TCW. Experimental work includes mixing mortar mixtures by partially replacing cement with the coal waste binders (UCW and TCW) at different incorporation levels of 4, 8, 12, and 16% of cement weight. Toxicity characteristic leaching procedure (TCLP) test was applied to investigate the environmental impacts of coal wastes. TCLP test results pointed out that heavy metals including Manganese, Cadmium, Lead, and Chromium could successfully entrap in the cement matrix. The compressive and exural strengths as mechanical characteristics of mortar mixtures were determined at 3, 7, 28, 90, and 180 curing days. Moreover, the mortar specimens were immersed in 3% sulfuric acid (H 2 SO 4 ) for 60 and 150 days. Durability results showed that the H 2 SO 4 attack resistance of binary cement mortars containing 4% coal waste binders was better than the plain mortar. Based on the scanning electron microscopy (SEM) images, ettringite was found as the main hydration product of binary cement after 28 days; however, the existence of calcium silicate hydrate (CSH) and calcium hydroxide (Ca(OH) 2 ) in the cement matrix of mixes after 90 days explains the more compact microstructure attained by using coal waste as cement replacement materials compared to control mixtures.
This study aims to examine the influence of untreated coal waste (UCW) and treated coal waste (TCW) as supplementary cementitious materials (SCMs) on the environmental, mechanical, durability, and microstructural characteristics of mortar mixes. UCW preparation procedure consists of sequential steps of crushing and grinding. Afterward, UCW is thermally activated through incinerating at 750°C to be promoted to TCW. Experimental work includes mixing mortar mixtures by partially replacing cement with the coal waste binders (UCW and TCW) at different incorporation levels of 4, 8, 12, and 16% of cement weight. Toxicity characteristic leaching procedure (TCLP) test was applied to investigate the environmental impacts of coal wastes. TCLP test results pointed out that heavy metals including Manganese, Cadmium, Lead, and Chromium could successfully entrap in the cement matrix. The compressive and flexural strengths as mechanical characteristics of mortar mixtures were determined at 3, 7, 28, 90, and 180 curing days. Moreover, the mortar specimens were immersed in 3% sulfuric acid (H2SO4) for 60 and 150 days. Durability results showed that the H2SO4 attack resistance of binary cement mortars containing 4% coal waste binders was better than the plain mortar. Based on the scanning electron microscopy (SEM) images, ettringite was found as the main hydration product of binary cement after 28 days; however, the existence of calcium silicate hydrate (CSH) and calcium hydroxide (Ca(OH)2) in the cement matrix of mixes after 90 days explains the more compact microstructure attained by using coal waste as cement replacement materials compared to control mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.