Recent technologies such as artificial intelligence, machine learning, and big data are essential for supporting healthcare monitoring systems, particularly for monitoring Monkeypox confirmed cases. Infected and uninfected cases around the world have contributed to a growing dataset, which is publicly available and can be used by artificial intelligence and machine learning to predict the confirmed cases of Monkeypox at an early stage. Motivated by this, we propose in this paper a new approach for accurate prediction of the Monkeypox confirmed cases based on an optimized Long Short-Term Memory (LSTM) deep network. To fine-tune the hyper-parameters of the LSTM-based deep network, we employed the Al-Biruni Earth Radius (BER) optimization algorithm; thus, the proposed approach is denoted by BER-LSTM. Experimental results show the effectiveness of the proposed approach when assessed using various evaluation criteria, such as Mean Bias Error, which is recorded as (0.06) using BER-LSTM. To prove the superiority of the proposed approach, six different machine learning models are included in the conducted experiments. In addition, four different optimization algorithms are considered for comparison purposes. The results of this comparison confirmed the superiority of the proposed approach. On the other hand, several statistical tests are applied to analyze the stability and significance of the proposed approach. These tests include one-way Analysis of Variance (ANOVA), Wilcoxon, and regression tests. The results of these tests emphasize the robustness, significance, and efficiency of the proposed approach.
Today, the new coronavirus disease (COVID-19) is a global epidemic that spreads rapidly among individuals in most countries around the world and, therefore, becomes the greatest worldwide threat. The aim of this study is to find the best predictive models for the confirmation of daily situations in countries with a large number of confirmed cases. The study was conducted on the countries that recorded the highest infection rate, namely China, Italy and the United States of America. The second goal is using predictive models to get more prepared in terms of health care systems. In this study, predictions were made through statistical prediction models using the ARIMA and exponential growth model. The results indicate that the exponential growth model is better than ARIMA models for forecasting the COVID-19 cases.
This paper proposes an improved salp swarm algorithm (ISSA) as an effective metaheuristic method for tackling global optimization issues and damping power system oscillations. In the suggested ISSA, new equations are introduced to update the location of the leader and followers. This modification improves the method's exploration possibilities while also preventing it from converging prematurely. Benchmark test functions are used to confirm the proposed algorithm's performance, and the results are compared to SSA and other effective optimization algorithms. According to the extensive comparisons, the enhanced ISSA algorithm has higher convergence accuracy and stability than the original SSA and other researched algorithms. Furthermore, the feasibility and efficiency of the proposed method were demonstrated by the simultaneous coordinated design of UPFC based damping controllers. For the two-area, four-machine system, the experimental findings are provided. Simulation experiments reveal that ISSA designed controllers outperform those created using other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.