Breast cancer constitutes a significant threat to women's health and is considered the second leading cause of their death. Breast cancer is a result of abnormal behavior in the functionality of the normal breast cells. Therefore, breast cells tend to grow uncontrollably, forming a tumor that can be felt like a breast lump. Early diagnosis of breast cancer is proved to reduce the risks of death by providing a better chance of identifying a suitable treatment. Machine learning and artificial intelligence play a key role in healthcare systems by assisting physicians in diagnosing early, better, and treating various diseases. For achieving the early detection of breast cancer, this paper proposes a Machine Learning-based two-level top-down hierarchical approach for breast cancer detection and classification into three classes: normal, benign, and malignant, using the Mammographic Image Analysis Society (MIAS) mammography dataset. Different data preprocessing techniques are applied before using feature extraction techniques and machine learning algorithms for classification. The first classification stage which distinguishes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.