The transient squeezing flow of a magneto-micropolar biofluid in a noncompressible porous medium intercalated between two parallel plates in the presence of a uniform strength transverse magnetic field is investigated. The partial differential equations describing the two-dimensional flow regime are transformed into nondimensional, nonlinear coupled ordinary differential equations for linear and angular momentum (micro-inertia). These equations are solved using the robust Homotopy Analysis Method (HAM) and also numerical shooting quadrature. Excellent correlation is achieved. The influence of magnetic field parameter (Ha) , micropolar spin gradient viscosity parameter (Γ) and unsteadiness parameter (S) on linear and angular velocity (micro-rotation) are presented graphically, for specified values of the micropolar vortex viscosity parameter (R), Darcy number (Da i.e. permeability parameter) and medium porosity parameter (ε). Increasing magnetic field (Ha) serves to decelerate both the linear and angular velocity i.e. enhances lubrication. The excellent potential of HAM in bio-lubrication flows is highlighted.
We investigated an axisymmetric unsteady two-dimensional flow of nonconducting, incompressible second grade fluid between two circular plates. The similarity transformation is applied to reduce governing partial differential equation (PDE) to a nonlinear ordinary differential equation (ODE) in dimensionless form. The resulting nonlinear boundary value problem is solved using homotopy analysis method and numerical method. The effects of appropriate dimensionless parameters on the velocity profiles are studied. The total resistance to the upper plate has been calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.