Background. The dental pulp is a heterogeneous soft tissue that supplies nutrients and acts as a biosensor to identify pathogenic stimuli. Regeneration of the dental pulp is one of the desirable topics for researchers. Graphene oxide nanosheets (nGOs) help overexpression of the genes related to odontogenic differentiation of stem cells from dental pulps and increases attachment and proliferation of dental pulp stem cells. Despite its benefits, nGO may be considered as a threat to the environment and human health. Therefore, the purpose of this study was to evaluate the biocompatibility potential of graphene oxide (nGO), chitosan functionalized graphene oxide (nGO-CS), and carboxylated graphene (nGO-COOH) when exposed to human dental pulp stem cells (hDPSCs). Material and Methods. Some different aspects of biocompatibility of nGO, nGO-CS, and nGO-COOH were synthesized, and several intracellular effects induced by different concentrations of graphene-based nanosheets, including cell viability, intracellular oxidative damages, and various factors such as LDH, GSH, SOD, MDA, and MMP, were studied on hDPSCs. Results. According to results, IC50 was determined as 232.01, 467.81, and ≥1000 μg/mL for nGO, nGO-CS, and nGO-COOH, respectively. These results demonstrated the lower toxicity and higher cytocompatibility of nGO-CS and nGO-COOH compared to nGO. nGO-COOH not only has any adverse effect on the cell membrane and mitochondrial activity but also shows slight antioxidant activity at some concentrations. Conclusion. The findings help design safe and cytocompatible nGO derivatives for biomedical applications in dental fields.
Diabetes mellitus (DM) follows a series of metabolic diseases categorized by high blood sugar levels. Owing to the increasing diabetes disease in the world, early diagnosis of this disease is critical. New methods such as nanotechnology have made significant progress in many areas of medical science and physiology. Nanobiosensors are very sensible and can identify single virus particles or even low concentrations of a material that can be inherently harmful. One of the main factors for developing glucose sensors in the body is the diagnosis of hypoglycemia in individuals with insulin-dependent diabetes. Therefore, this study aimed to evaluate the most up-to-date and fastest glucose detection method by nanosensors and, as a result, faster and better treatment in medical sciences. In this review, we try to explore new ways to control blood glucose levels and treat diabetes. We begin with a definition of biosensors and their classification and basis, and then we examine the latest biosensors in glucose detection and new biosensors applications, including the artificial pancreas and updating quantum graphene data.
Background: The outbreak of COVID-19 in China in late 2019 was an unprecedented catastrophe that also involved many other countries, including Iran. Concerning the danger of disease contagion, it is necessary to detect asymptomatic or mild cases, especially in hospital staff who are highly exposed to the disease. Objectives: In this serosurvey study, we aimed to estimate IgG seroprevalence among hospital staff in two public hospitals to determine local transmission and infection risk factors, as well as protective immunity among high-risk populations. Methods: Screening was offered to the hospital staff of two public hospitals in Shiraz, Iran. Screening involved the measurement of IgG antibodies against SARS-CoV-2. Besides, a checklist that consisted of questions about sociodemographic, occupational, and epidemiological characteristics was completed by the participants. Results: Among 494 participants in this study, 29 (5.8%) had anti-SARS-CoV-2 IgG in their blood. Besides, 320 (64.8%) had at least one of the clinical symptoms within six months before this survey. Among participants with positive PCR, nine (21.4%) had anti-SARS-CoV-2 IgG, while this figure was seven (33.3%) for individuals with positive CT scans. Non-proper disposal of used protective equipment or infectious wastes (OR = 26.5), rotational daily work shifts (OR = 7.5), being anxious about getting COVID-19 (OR = 3.8), and age (OR = 1.06) were the significant determinants of having anti-SARS-CoV-2 IgG in the hospital staff. Conclusions: It is essential to continue training and giving technical consultations about COVID-19, especially the proper disposal of used protective equipment or infectious wastes in rotational daily shift workers.
: The virus causing COVID-19 disease is known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease spread rapidly and was transmitted like a contagious disease throughout China, and then it gradually spread in other parts of the world. Accordingly, the rapid and accurate detection of the SARS-CoV-2 virus plays an essential role in selecting timely treatments, saving lives, and preventing the spread of the disease. This study summarizes the methods used to identify coronavirus nucleic acid. The effectiveness of coronavirus nucleic acid detection kits by different samples and the performance of other diagnostic techniques are also addressed in this study. We searched Embase, Google Scholar, MEDLINE, Web of Science, Scopus, and PubMed databases as well as the references of all relevant articles in English published during 2019 - 2020 using keywords related to COVID-19, detection kits, and respiratory failure and proceedings from relevant conferences and congresses. The authors collected the relevant reports, and each of the authors independently reviewed the data published in different studies. The results of previous studies indicated that the diagnosis methods of the COVID-19 disease are the RT-PCR method, ELISA kits, quick tests, white blood cell count, C-reactive protein (CRP) levels, other laboratory factors and antigenic detection methods. Given the sensitivity and specificity of these methods at different periods using different samples, the disease interpretation can be performed accurately. The findings showed that proper laboratory equipment and appropriate laboratory kits are necessary for the rapid and precise identification of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.