Microstructure and electrical breakdown properties of blends and nanocomposites based on low-density polyethylene (LDPE) have been discussed. A series of LDPE nanocomposites containing different amount of organomodified montmorillonite (clay) with and without compatibilizer have been prepared by means of melt compounding. Two sets of blends of LDPE with two grades of Styrene-Ethylene-Butylene-Styrene block copolymers have been prepared to form cocontinuous structure and host the nanoreinforcement. A high degree of dispersion of oriented clay was observed through X-ray diffraction, scanning, and transmission electron microscopy. This was confirmed by the solid-like behavior of storage modulus in low frequencies in rheological measurement results. An alteration in the morphology of blends was witnessed upon addition of clay where the transportation phenomenon to the copolymer phase resulted in a downsizing on the domain size of the constituents of the immiscible blends. The AC breakdown strength of nanocomposites significantly increased when clay was incorporated. The partially exfoliated and intercalated clay platelets are believed to distribute the electric stress and prolong the breakdown time by creating a tortuous path for charge carriers. However, the incorporation of clay has been shown to diminish the DC breakdown strength of nanocomposites, mostly due to the thermal instability brought by clay.
Series of clay-containing nanocomposites have been prepared and investigated using frequency-domain dielectric spectroscopy at different temperatures. Different matrix materials have been used: neat low-density polyethylene (LDPE) with and without compatibilizer and co-continuous blends of LDPE with two grades of polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) copolymers. Two major relaxation modes were detected in the dielectric losses of all the nanocomposites and associated with Maxwell-Wagner-Sillars interfacial polarization and dipolar relaxation, respectively. Characteristic relaxation rates, activation energies, dielectric strength, and shape parameters of these relaxation mechanismes were calculated and discussed for the LDPE/clay nanocomposites. The addition of compatibilizer was found to slightly increase the dielectric loss of the nanocomposites while slowing the dynamics due to an improved dispersion. When combined with a high loading of nanofiller (15%), the compatibilizer addition led to lowfrequency dispersion. A new relaxation process was then observed for the nanocomposites with the blend matrix. Several speculations were made as to the origin of this phenomenon, all of which were related to the SEBS phase. POLYM. ENG. SCI., 60:968-978, 2020.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.