COVID-19 is an infectious and contagious virus. As of this writing, more than 160 million people have been infected since its emergence, including more than 125,000 in Algeria. In this work, We first collected a dataset of 4,986 COVID and non-COVID images confirmed by RT-PCR tests at Tlemcen hospital in Algeria. Then we performed a transfer learning on deep learning models that got the best results on the ImageNet dataset, such as DenseNet121, DenseNet201, VGG16, VGG19, Inception Resnet-V2, and Xception, in order to conduct a comparative study. Therefore, We have proposed an explainable model based on the DenseNet201 architecture and the GradCam explanation algorithm to detect COVID-19 in chest CT images and explain the output decision. Experiments have shown promising results and proven that the introduced model can be beneficial for diagnosing and following up patients with COVID-19.
Automated classification of medical images is an increasingly important tool for physicians in their daily activities. However, due to its computational complexity, this task is one of the major current challenges in the field of content-based image retrieval (CBIR). In this paper, a medical image classification approach is proposed. This method is composed of two main phases. The first step consists of a pre-processing, where a texture and shape based features vector is extracted. Also, a feature selection approach was applied by using a Genetic Algorithm (GA). The proposed GA uses a kNN based classification error as fitness function, which enables the GA to obtain a combinatorial set of feature giving rise to optimal accuracy. In the second phase, a classification process is achieved by using random Forest classifier and a supervised multi-class classifier based on the support vector machine (SVM) for classifying X-ray images.
Random Forest RF is a successful technique of ensemble prediction that uses the majority voting or an average depending on the combination. However, it is clear that each tree in a random forest can have different contribution to the treatment of some instance. In this paper, we show that the prediction performance of RF's can still be improved by replacing the GINI index with another index (twoing or deviance). Our experiments also indicate that weighted voting gives better results compared to the majority vote.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.