Solar air heater (SAH) is a heating device that uses the heated air in the drying of agriculture products and many engineering applications. The purpose of the present work is to study a forced convection flat plate solar air heater with granite stone storage material bed under the climatic conditions of Egypt-Aswan. Experiments are performed at different air mass flow rates ; varying from 0.016 kg/s to 0.08 kg/s, for five hot summer days of July 2008. Hourly values of global solar radiation and some meteorological data (temperature, pressure, relative humidities, etc.) for measuring days are obtained from the Egyptian Meteorological Authority, Aswan station. Inlet and outlet temperatures of air from a SAH have been recorded. In this work, attempt has been made to present the temperature distribution in non dimensional form that makes it useable for any region and not restricted to local conditions. The variation of solar radiation, air heater efficiency, Nusselt number and temperature distribution along the air heater are discussed. Comparisons between the calculated values of outlet air temperatures, average air temperatures and storage material temperatures and the corresponding measured values showed good agreement. Comparison between current work and those in previous investigations showed fair agreement
Solar dryer chamber is designed and operated for five days of July 2008. Drying experiments are conducted for sponge-cotton; as a reference drying material in the ranges between 35.0 to 49.5 °C of ambient air temperature, 35.2 to 69.8 °C drying air temperature, 30 to 1258 W/m 2 solar radiation, and 0.016 to 0.08 kg/s drying air flow rate. For each experiment, the mass flow rate of the air remained constant throughout the day. The variation of moisture ratio, drying rate, overall dryer efficiency, and temperature distribution along the dryer chamber for various drying air temperatures and air flow rates are discussed. The results indicated that drying air temperature is the main factor in controlling the drying process and that air mass flow rate has remarkable influence on overall drying performance. For the period of operation, the dryer attained an average temperature of 53.68 °C with a standard deviation of 8.49 °C within a 12 h period from 7:00 h to 19:00 h. The results of this study indicated that the present drying system has overall efficiency between 1.85 and 18.6% during drying experiments. Empirical correlations of temperature lapse and moisture ratio in the dryer chamber are found to satisfactorily describe the drying curves of sponge-cotton material which may form the basis for the development of solar dryer design charts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.