The evolution of mobile mapping systems (MMSs) has gained more attention in the past few decades. MMSs have been widely used to provide valuable assets in different applications. This has been facilitated by the wide availability of low-cost sensors, advances in computational resources, the maturity of mapping algorithms, and the need for accurate and on-demand geographic information system (GIS) data and digital maps. Many MMSs combine hybrid sensors to provide a more informative, robust, and stable solution by complementing each other. In this paper, we presented a comprehensive review of the modern MMSs by focusing on: (1) the types of sensors and platforms, discussing their capabilities and limitations and providing a comprehensive overview of recent MMS technologies available in the market; (2) highlighting the general workflow to process MMS data; (3) identifying different use cases of mobile mapping technology by reviewing some of the common applications; and (4) presenting a discussion on the benefits and challenges and sharing our views on potential research directions.
3D recovery from multi-stereo and stereo images, as an important application of the image-based perspective geometry, serves many applications in computer vision, remote sensing, and Geomatics. In this chapter, the authors utilize the imaging geometry and present approaches that perform 3D reconstruction from cross-view images that are drastically different in their viewpoints. We introduce our project work that takes ground-view images and satellite images for full 3D recovery, which includes necessary methods in satellite and ground-based point cloud generation from images, 3D data co-registration, fusion, and mesh generation. We demonstrate our proposed framework on a dataset consisting of twelve satellite images and 150 k video frames acquired through a vehicle-mounted Go-pro camera and demonstrate the reconstruction results. We have also compared our results with results generated from an intuitive processing pipeline that involves typical geo-registration and meshing methods.
In this paper, we implemented a video haze removal system that runs in real time and can be integrated in a vehicle dashboard to assist drivers. We used a heterogeneous TI TMS320DM6446 platform to distribute the algorithmic tasks among ARM, DSP, and VICP cores. Our processing algorithm uses the dark channel prior and has been applied to video. It has two algorithmic components which are the operation on multi-scale resolution and a new reconstruction formula for recovering the scene radiance to save computational time without sacrificing quality. We achieved eight frames per second at 720 9 480 video frame resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.