Natural companies employ turbine flow meters to measure natural gas which delivered to Compressed Natural Gas stations. The stations utilize compressors to increase pressure. The compressor produces a flow pulsation, which affects the accuracy of the measurement. The main aim of this article is to decrease the compressor effects on measurement accuracy by utilizing a snubber between the turbine flow meter and the reciprocating compressors. For this aim, numerical modeling has been built to simulate natural gas flow through a snubber. The effects of various snubber parameters on pressure pulsation have been investigated. The parameters included snubber volume to the minimum volume ratio, the ratio of height to diameter, outlet pipe length, and the existence and non-existence a buffer. The Ansys Fluent has been used for numerical modeling with transient analysis. Results show that in H/D value of 3, the maximum reduction in the percentage of pressure pulsation drop is about 47% and increasing the outlet pipe length to the 10 times of initial length causes a decrease of about 83% in pressure pulsations. Besides, for the ratio of snubber volume to the minimum volume from 1 to 16.7, the amplitude of pressure pulsations decreases from 4.1% to 0.25%.
Turbine meters are used in compressed natural gas (CNG) stations in abundance to measure the volumetric flow rate of the inlet gas. These types of meters are very sensitive to oscillating and pulsating flows. When the station’s reciprocating compressor starts to work, due to the piston and valve performance, pulsating flow will create in the suction line and downstream of turbine meter. This pulsation makes false pulses in the meter and finally makes difference between the measured gas flow from the metering of the gas company and the amount of gas that has been sold at the station. In this study, numerical simulation of dampeners has been investigated after turbine meter and before entering gas to compressor. The goal is eliminating or reducing the effects of operating compressor in CNG station on turbine meter and reducing measurement errors. Numerical simulation of dampener was investigated by Ansys-Fluent CFD software for a CNG station with the gas inlet pressure 250 psi, inlet and outlet pipe diameter of 2 inches. In this study, several parameters such as (1) height-to-diameter ratio in the cylinder, (2) distance between dampener and compressor, and (3) volume-to-minimum volume ratio according to API 618, have been checked. The numerical results show that by increasing height-to-diameter ratio up to 3, the pulsating amplitude on Plane 1 will be reduced, and this is the best ratio according to the present results. Also, by increasing the outlet pipe length, the pressure pulsation amplitude decreases from 3.4% of pressure line in 2 m length to 0.7% in 5 m length. Moreover, the results showed 2.4% increase and 1.9% decrease in the maximum and minimum pressure for CV = 1 and CV = 16.7, respectively. Comparing fluent numerical method with previous studies shows less than 2% difference that demonstrates the validity and reliability of present investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.